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Constraints on work extraction are fundamental to our operational understanding of the thermodynamics
of both classical and quantum systems. In the quantum setting, finite-time control operations typically
generate coherence in the instantaneous energy eigenbasis of the dynamical system. Thermodynamic
cycles can, in principle, be designed to extract work from this nonequilibrium resource. Here, we isolate
and study the quantum coherent component to the work yield in such protocols. Specifically, we identify a
coherent contribution to the ergotropy (the maximum amount of unitarily extractable work via cyclical
variation of Hamiltonian parameters). We show this by dividing the optimal transformation into an
incoherent operation and a coherence extraction cycle. We obtain bounds for both the coherent and
incoherent parts of the extractable work and discuss their saturation in specific settings. Our results are
illustrated with several examples, including finite-dimensional systems and bosonic Gaussian states that
describe recent experiments on quantum heat engines with a quantized load.
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Introduction.—The Thomson [1] formulation of the
second law is a constraint on the ability of an external
agent to extract work from a system. More precisely, it
states that no work can be extracted from a closed
equilibrium system during a cyclic variation of a parameter
by an external source [2,3]. This formulation was influen-
tial in mathematical physics, leading to a definition of the
condition of thermal equilibrium for quantum states
through the notion of passivity and complete passivity
[4,5]. A state ρ̂ is said to be passive with respect to a
Hamiltonian when no work can be extracted from it by
means of a cyclical variation of a Hamiltonian parameter,
while it can be shown that a Gibbs state is the unique
completely passive state such that ρ̂⊗N remains passive for
all N. In other words, passivity allows us to derive
Thomson’s formulation of the second law as a constraint
on unitary work extraction from quantum systems [6]. If a
state is nonpassive with respect to a Hamiltonian, work can
be extracted and, upon maximization over the space of
cyclical unitaries, the optimal yield is known as the
ergotropy [7,8]. The ergotropy has been established as
an important quantity in the emerging field of quantum
thermodynamics [10–14] and has recently been measured
in two experiments which explore work deposition to
external loads coupled to microscopic engines [15,16].
In the limit of many copies, the ergotropy converges to the
conventional non-equilibrium part of the free energy [17]
and it has also been incorporated into an open system

thermodynamic description of finite quantum systems,
recovering first and second laws [18].
A central theme in the field of quantum thermo-

dynamics over the last decade has been the identification
of uniquely quantum signatures in thermodynamic set-
tings. This includes the identification of quantum effects
in thermal machines [19–34], in work extraction protocols
[17,35–48], in fluctuations of work [49–55], and in work
deposition processes [56–62], to name but a few exam-
ples. Arguably the most fundamental of all nonclassical
features is quantum coherence, yet precise mathematical
techniques for its quantification have only recently been
formulated in quantum information theory [63,64]. From
the perspective of quantum thermodynamics, many stud-
ies have aimed at highlighting the nontrivial role that
coherence may play [14,65–74]. Coherence is a basis-
dependent quantity that can be expressed in terms of the
relative entropy between the state of the system at hand
and its dephased counterpart in the relevant basis [63].
This provides a connection to the finite-time thermo-
dynamics of quantum systems, where the relative entropy
is ubiquitous in the assessment of irreversible entropy
production of closed [75–77] and open systems [78–85].
This connection was recently exploited in order to isolate
a coherent contribution to the entropy production in
quantum dynamics [86–89]. Here, the relevant coherence
is defined relative to the energy eigenbasis, which plays a
distinguished role in thermodynamics.
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In this work, we focus on the role of such coherence
in ergotropic work extraction. We believe the simplicity
of our approach, together with its operational
significance will be of particular interest to those
interested in isolating nonclassical signatures in quan-
tum thermodynamics.
Preliminaries.—Given a quantum system in an initial

state ρ̂, and a Hamiltonian Ĥ ¼ P
k εkjεkihεkj, we are

interested in the amount of coherence in the energy
eigenbasis. In what follows, we will quantify the coherence
with the relative entropy of coherence Cðρ̂Þ [63,64]. This is
motivated from the description of coherence as a quantum
resource theory [64,90].
A quantum resource arises when there is a naturally

restricted set of operations O which are significantly easier
to implement than operations outside O—e.g., local oper-
ations and classical communication (LOCC) in entangle-
ment theory [91]. If these free operations O only allow
some free states F to be created “for free,” all other states
become a resource whose creation requires the (costly)
implementation of operations outside O. We may quantify
the resourcefulness of a nonfree state by means of a
function μ that maps states to non-negative reals. We call
μ a resource monotone if (i) its value cannot increase under
application of any free operation Ω ∈ O to any state ρ̂:
μðρ̂Þ ≥ μ½Ωðρ̂Þ�; and if (ii) μðφ̂Þ ¼ 0 for all φ̂ ∈ F . One
way of constructing a monotone μ is to minimize a
(contractive) distance function d on the space of quantum
states with respect to F : μdðρ̂Þ ≔ minφ̂∈F dðρ̂; φ̂Þ. The
usefulness of such a distance-based μd then depends not
least on its ease of computation—i.e., if it can be expressed
as a closed-form function.
Returning to coherence, various viable classes of free

operations have been considered for which the free statesF
are the set of incoherent states IH, i.e., density matrices δ̂
that are diagonal in the energy eigenbasis [64]. For all of
these classes, valid coherence monontones may be obtained
based on suitable distance measures such as Tsallis relative
α-entropies Dα for which succinct expressions have been
found [92]: Cα ≔ minδ̂∈IHDαðρ̂kδ̂Þ, where the normalized

state δ̂ρ;α ∝
Phεjjρ̂αjεji1=αjεjihεjj obtains the minimum.

We here focus on the limit α → 1 as, in this case, the
minimal state δ̂ρ ≡ δ̂ρ;α ¼ Δðρ̂Þ is directly connected to the
original state ρ̂ by a physical operation—dephasing with Δ.
In this limit, Dα becomes the standard quantum relative
entropy Dðρ̂kδ̂Þ ¼ Trfρ̂ðlog ρ̂ − log δ̂Þg and Cα becomes
the entropy of coherence Cðρ̂Þ ¼ Sðδ̂ρÞ − Sðρ̂Þ, with the
Von Neumann entropy Sðσ̂Þ ¼ −Trfσ̂ log σ̂g [63].
Following the seminal paper [7], we are now interested

in extracting work from the quantum system at hand by
using a cyclic unitary transformation Û ∈ Uc, where Uc
denotes the set of unitary transformations generated in a
given interval ð0; τÞ by a time-dependent Hamiltonian ĤðtÞ
such that Ĥð0Þ ¼ ĤðτÞ ¼ Ĥ. In this context, one typically

assumes complete control over the system [70]: that is, the
possibility of generating any unitary evolution through
suitable control fields applied to the system, which are
switched off at the end of the transformation. Under the
action of the unitary Û, the state transforms as ρ̂ → Û ρ̂ Û†,
and the average work extracted from the system is
Wðρ̂; ÛÞ ¼ TrfĤðρ̂ − Û ρ̂ Û†Þg. The maximum of W over
the set Uc is called ergotropy, E. After ordering the labels of
eigenstates of Ĥ and of ρ̂ such that Ĥ ¼ P

d
k¼1 εkjεkihεkj,

with εk < εkþ1, and ρ̂ ¼ P
d
k¼1 rkjrkihrkj, with rk ≥ rkþ1,

we define the optimal ergotropic transformation Êρ as
the one that maps ρ̂ into the passive state P̂ρ ¼
Êρρ̂Ê

†
ρ ¼

P
k rkjεkihεkj. We notice that the optimal unitary

Ê depends on the state ρ̂, and that the ergotropy is then
given by

Eðρ̂Þ ¼ maxÛ∈Uc
Wðρ̂; ÛÞ≡Wðρ̂; ÊρÞ ¼ TrfĤðρ̂ − P̂ρÞg

≡X
k

εkðρkk − rkÞ; ð1Þ

where ρkk (the population of ρ̂ in the kth energy eigen-
state) can be expressed as ρkk ¼

P
k0 rk0 jhrk0 jεkij2. Our

main aim is to demonstrate a precise connection between
E and the amount of coherence in the initial state Cðρ̂Þ
[93]. In the following section, we show how to split the
ergotropy into two contributions, one of which directly
connected to the presence of energetic coherence in
the state ρ̂.
Coherent and incoherent contributions to ergotropy.—

We start by introducing the incoherent part of the ergotropy
Ei, which can be defined in two equivalent ways. One can
think of Ei as the maximum work extractable from ρ̂
without altering its coherence. To formalize this idea, we
can imagine breaking the transformation Êρ into an
incoherent operation followed by a second, coherence-
consuming, cyclic unitary. To this end, we define the subset

UðiÞ
c ⊂ Uc of incoherent, cyclic, unitary transformations,

such that any V̂ ∈ UðiÞ
c is coherence preserving:

Cðρ̂Þ ¼ CðV̂ ρ̂ V̂†Þ. Such V̂ is in fact a member of the
class of strictly incoherent operations (SIOs), which admit a
very operational structure [64,94,95]; V̂ amounts to a
reshuffling of the energy basis, up to irrelevant phase
factors, of the form V̂ ¼ P

k e
−iφk jεkihεπk j≡ V̂π , where πk

is the kth element in the result of the permutation π of the
indices [96]. The incoherent contribution to ergotropy is
then defined as

Ei ¼ max
V̂∈UðiÞ

c
Wðρ̂; V̂Þ≡maxπWðρ̂; V̂πÞ: ð2Þ

The optimal permutation π̃, realizing the maximum in the
equation above, is the one that rearranges the populations
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fρkkgk¼1;…d in descending order: ρπ̃jπ̃j ≥ ρπ̃jþ1π̃jþ1
; ∀ j.

Letting σ̂ρ ¼ V̂ π̃ ρ̂V̂
†
π̃ ¼

P
k

P
k0 ρπ̃k;π̃k0 jεkihεk0 j, the incoher-

ent contribution to ergotropy is

Eiðρ̂Þ ¼ TrfĤðρ̂ − σ̂ρÞg ¼
X
k

εkðρkk − ρπ̃kπ̃kÞ: ð3Þ

The state σ̂ρ possesses the same coherence as ρ̂, but less
average energy. Therefore, Ei is the maximum amount of
work that can be extracted from ρ̂ without changing its
coherence, and, among the states having the same amount
of coherence as ρ̂, σ̂ρ is singled out as the one that possesses
the least possible average energy [97]. In particular, we
notice that, when trying to extract work from the state σ̂ρ
through the optimal cyclic unitary Êσ, one arrives at the
very same passive state that is obtained from ρ̂. In our
notation, P̂σ ¼ P̂ρ. This is because σ̂ρ has the same
eigenvalues as ρ̂.
An alternative (but equivalent) route to the identification

of the incoherent contribution to ergotropy is provided by
defining Ei as the maximum amount of work extractable
from ρ̂ after having erased all of its coherences via the
dephasing map Δ. This amounts to defining Ei as the full
ergotropy of the dephased state, Ei ¼ Eðδ̂ρÞ, where δ̂ρ ¼
Δ½ρ̂� has the same energy populations as ρ̂ (and, thus, the
same average energy) but zero coherence. The ergotropy of
δ̂ρ can be written by first defining the passive state P̂δ

obtained from δ̂ρ after rearranging the populations in
decreasing order, and then letting

Eiðρ̂Þ≡ Eðδ̂ρÞ ¼ TrfĤðδ̂ρ − P̂δÞg: ð4Þ

This definition is fully equivalent to the one given in Eq. (3)
[98]. Indeed, δ̂ρ has the same populations as ρ̂ in the energy
basis; consequently, the optimal reshuffling unitary that
maps δ̂ρ into P̂δ is given by the very same V̂ π̃ introduced
above. This implies that P̂δ has the same populations as σ̂ρ
(in the same order!), but no coherence. As a result of these
considerations, one immediately realizes that P̂δ can be
obtained by applying the dephasing map to σ̂ρ, and that the
two states share the same average energy:

P̂δ ≡ Δ½σ̂ρ� ⇒ TrfĤσ̂ρg≡ TrfĤP̂δg:

Having defined the incoherent part of Eðρ̂Þ, the coherent
contribution to ergotropy is simply given by the difference

Ec ¼ E − Ei ¼ TrfĤðσ̂ρ − P̂ρÞg≡
X
k

εkðρπ̃kπ̃k − rkÞ: ð5Þ

This is a non-negative quantity as, in general, σ̂ρ is an
active state. Notice further that it coincides with the full
ergotropy of σ̂ρ.
The coherent ergotropy Ec can be understood as that part

of extractable work which cannot be obtained by means of

incoherent operations applied to state ρ̂, and it is due to the
presence of coherence in the initial state. Despite this, Ec is
not a coherence monotone, as the inequality EcðV̂ ρ̂ V̂†Þ ≤
Ecðρ̂Þ is not satisfied for every incoherent operation V̂ (see
Supplemental Material [101] for an illustrative example).
Nevertheless, both the state σ̂ρ and the coherent part of the
ergotropy, Ec, are uniquely defined once the state ρ̂ and the
Hamiltonian Ĥ are given, and they result entirely from the
initial coherence, implying that σ̂ρ is not passive.
Figure 1 summarizes these considerations and relation-

ships. It shows the various states and operations defined up
to now in the coherence-versus-average-energy plane.
Bounds for coherent ergotropy.—Given the form of the

coherent ergotropy, we can provide upper and lower
bounds to its value and show their tightness. Indeed, by
introducing the Gibbs state ρ̂β ¼ e−βĤ=Z with inverse
temperature β, we can exploit the identity Dðσ̂kρ̂βÞ ¼
βTrfĤðσ̂ − ρ̂βÞg − Sðσ̂Þ þ Sðρ̂βÞ, valid for any state σ̂, in
order to obtain the following chain of relations

βEc ¼ βðE − EiÞ ¼ βTrfĤðP̂δ − P̂ρÞg
¼ βTrfĤðP̂δ − ρ̂βÞg − βTrfĤðP̂ρ − ρ̂βÞg
¼ ½DðP̂δjjρ̂βÞ þ SðP̂δÞ − Sðρ̂βÞ�
− ½DðP̂ρjjρ̂βÞ þ SðP̂ρÞ − Sðρ̂βÞ�:

After taking into account that SðP̂ρÞ ¼ Sðρ̂Þ, and that
SðP̂δÞ ¼ Sðδ̂ρÞ (due to the fact that they are connected
by unitary transformations), and, finally, using Cðρ̂Þ ¼
Sðδ̂ρÞ − Sðρ̂Þ, we obtain

βEc ¼ Cðρ̂Þ þDðP̂δkρ̂βÞ −DðP̂ρkρ̂βÞ; ð6Þ

which is valid for every finite β.

FIG. 1. Position of the various states (see main text) in a
coherence-versus-average-energy diagram. Gray dots represent
quantum states—e.g., arising from the initial state ρ̂ after the
transformations Êρ, Δ, V̂ π̃ are performed. The arrows represent-
ing transformations are intended merely to point from the initial
to the final state, without implying a precise path in the plane. For
example, the transformation V̂ π̃ is represented by a horizontal line
because it connects states with the same amount of coherence;
however, coherence may change during the transformation. The
horizontal distance ΔEc between the thermal state ρ̂β� and P̂ρ is
the bound ergotropy (see Sec. IV). It may be zero, depending on
the system at hand (i.e., iff the eigenvalues of ρ and ρβ� are related
by a permutation).
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From this relation, using the fact the D ≥ 0, one easily
obtains bounds for Ecðρ̂Þ:

Cðρ̂Þ −DðP̂ρkρ̂βÞ ≤ βEcðρ̂Þ ≤ Cðρ̂Þ þDðP̂δkρ̂βÞ: ð7Þ

One can saturate the upper bound if P̂ρ ¼ ρ̂β. This requires
that the ergotropic transformation Êρ takes ρ̂ to the thermal
state ρ̂β. Because of unitarity of this transformation, a
necessary condition on β is that Sðρ̂Þ ¼ Sðρ̂β� Þ. We label
the specific value of β for which this entropic equality holds
β�, and note that it exists for any ρ̂. Moreover, for a single
qubit, as well as for the important class of bosonic or
fermionic states of Gaussian form, the condition β ¼ β� is
not just necessary, but also sufficient for the saturation of
the upper bound in Eq. (7) (see examples in Sec. V).
More generally, however, the choice β ¼ β� does not

imply saturation of the bound. That is, the difference

ΔEc ≔
1

β�
½Cðρ̂Þ þDðP̂δkρ̂β� Þ� − Ecðρ̂Þ

¼ 1

β�
DðP̂ρkρ̂β� Þ ≥ 0 ð8Þ

does not generally vanish. In fact, by expressing it as
ΔEc ¼ TrfĤðP̂ρ − ρ̂β� Þg we note that it equates to what is
called the bound ergotropy Eb [17]—, i.e., the amount of
additional ergotropy that a global unitary transformation
could retrieve from ρ̂⊗n, per system, in the limit n → ∞ (in
addition to the single-system ergotropy E).
The saturation of the upper bound of Eq. (7) is,

furthermore, equivalent to the results of Ref. [86] where
the irreversible work Wirr performed on a quantum system
was analyzed for a unitary transformation taking an initial
thermal state ρ̂β� to a final state ρ̂ ¼ Ûρ̂β�Û

†. It was shown
that β�Wirr ¼ Cðρ̂Þ þDðδ̂ρjjρ̂β� Þ. For a cyclic transforma-
tion,Wirr coincides with the average work performed on the
system, whose absolute value, in turn, coincides with the
work extracted from it by the cyclic unitary Û†, when it is
prepared in the state ρ̂. If we take Û† ¼ Êρ, then the result
of Ref. [86] is translated into our notation as

β�Eðρ̂Þ ¼ Cðρ̂Þ þDðδ̂ρkρ̂β� Þ; if Êρρ̂Ê
†
ρ ¼ ρ̂β� : ð9Þ

But, with the same argument as given above, the incoherent
ergotropy, Eq. (4), can be rewritten (for any β) as

βEiðρ̂Þ ¼ Dðδ̂ρkρ̂βÞ −DðP̂δkρ̂βÞ: ð10Þ

Taking β ¼ β�, and subtracting this relation from Eq. (9),
we obtain the saturation of the upper bound of Eq. (7):

β�Ecðρ̂Þ ¼ Cðρ̂Þ þDðP̂δkρ̂β�Þ; if Êρρ̂Ê
†
ρ ¼ ρ̂β� : ð11Þ

The lower bound in Eq. (7), on the other hand, is
saturated iff P̂δ ¼ ρ̂β for some inverse temperature β. For

Ec > 0, this requires that the populations of ρ̂ in the energy
basis (coinciding with those of δ̂ρ) are indeed thermal, but in
thewrongorder, and that the state ρ̂ contains some coherence
in the energy basis. An example is provided by the following
qutrit density matrix, written in the energy basis:

ρ̂¼

0
B@
g1 c 0

c� g3 0

0 0 g2

1
CA; gi ¼

e−βεiP
je

−βεj
; jcj≤ ffiffiffiffiffiffiffiffiffi

g1g3
p

:

For such a state, the three populations ri are
obtained by decreasingly ordering the set of numbers
fðg1 þ g3=2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðg1 − g3Þ2=4� þ jcj2

p
; g2; ½ðg1 þ g3Þ=2�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðg1 − g3Þ2=4� þ jcj2

p
g, and the passive state P̂ρ is

obtained by taking the ordered set as energy level popula-
tions. On the other hand, P̂δ ≡ ρ̂β ¼ diagfg1; g2; g3g; but
this thermal state does not have the same entropy
as ρ̂ (and β has nothing to do with β�). Using the defini-
tions above, we obtain E ¼ ε1ðg1 − r1Þ þ ε2ðg3 − r2Þþ
ε3ðg2 − r3Þ, while Ei ¼ ðε3 − ε2Þðg2 − g3Þ. The difference
between these two quantities gives Ec, which saturates
the lower bound in Eq. (7) [i.e., for these states,
DðP̂δjjρ̂βÞ ¼ 0].
Lastly, we can exploit Eq. (6) to investigate the con-

vertibility of the states P̂δ and P̂ρ under thermal operations,
and endow this problem with an operational interpretation
thanks to the definition of ergotropy. Since both these states
commute with the Hamiltonian and are passive, their
convertibility may be addressed within the resource theory
of athermality [102–104]. In particular, if a thermal
operation [103,105] exists that takes P̂δ to P̂ρ (P̂ρ to
P̂δ), it follows thatDðP̂δkρ̂βÞ −DðP̂ρkρ̂βÞ≡ βEc − Cðρ̂Þ ≥
0 (≤ 0, respectively).
Examples.—In order to illustrate our results, we consider

first the simple case of a qubit, having energy eigenvalues
ε1 ¼ 0 and ε2. In this case, any initial state ρ̂ is transformed
by the ergotropic transformation Ê into a passive state with
a thermal structure P̂ρ ≡ ρ̂β� , for a suitably chosen inverse
temperature β�. Then,ΔEc vanishes and the upper bound in
Eq. (7) is saturated. Moreover, in this case, the coherent part
of ergotropy can be directly expressed in terms of the purity
of the state, pðρ̂Þ ¼ Trfρ̂2g and of another coherence
quantifier, the l1 norm of coherence [64], defined as
Cl1ðρ̂Þ ¼ 2jhε1jρ̂jε2ij. Indeed, some simple manipulations
lead to

Ecðρ̂Þ ¼
ε2
2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðρ̂Þ − 1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðρ̂Þ − 1 − C2

l1
ðρ̂Þ

q
�: ð12Þ

This is proved by noticing that Ecðρ̂Þ ¼ ε2ðρ22 − r2Þ, where
the smallest eigenvalue of ρ̂ is r2 ¼ ½1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðρ̂Þ − 1
p �=2,

and where the smallest population of ρ̂ is ρ22 ¼
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðρ̂Þ − 1 − C2

l1

q
�=2.
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If follows from Eq. (12) that the ergotropy increases for
any operation Ω with p½Ωðρ̂Þ� < 1

2
þ 1

2
f½Ecðρ̂Þ=ðε2Þ�

þ 1
4
C2
l1
½Ωðρ̂Þ�½ðε2Þ=Ecðρ̂Þ�g2. In the Supplemental

Material [101] we provide an example of an incoherent
such operation—generalized amplitude damping—to prove
that Ec is not a coherence monotone.
For a given value of the purity p, the coherence takes its

maximum value for mixed states ρ̂ with equal populations,
ρ11 ¼ ρ22 ¼ 1=2, for which p ¼ ð1þ C2

l1
Þ=2 and Ec ¼

Cl1=2. It follows that EcðρÞ is maximized if the initial state
is a maximally coherent pure state with Cl1 ¼ 1 and p ¼ 1.
This latter observation is, in fact, more general: for a d-

level system, we get the maximum value of Ecðρ̂Þ (with,
correspondingly, a null incoherent contribution Ei) when ρ̂
is a maximally coherent pure state, ρ̂ ¼ jψihψ j, with
jψi ¼ P

i jεii=
ffiffiffi
d

p
. In such a case, indeed, any incoherent

unitary V̂π preserves the average energy.
To discuss a less trivial case, where the upper bound in

Eq. (7) is not always saturated, we now consider the
behavior of the coherent part of ergotropy for a three-level
system with energy eigenvalues ε1 ¼ 0, and ε2 ¼ Rε3 [with
R ∈ ð0; 1Þ]. In particular, we ask under what conditions the
bound is saturated (i.e., ΔEc ¼ 0). Selecting β ¼ β� as
required for saturation, Eq. (11) implies that once the
energy values are fixed, what really matters are just the first
two eigenvalues of the density matrix, r1, r2 (which fix
the third one as r3 ¼ 1 − r1 − r2). For our three-level
system, the bound ergotropy can be written as
ΔEc ¼ ε3½r2ðR − 1Þ þ 1 − r1 − Z−1ðRe−β�Rε3 þ e−β

�ε3Þ�,
where Z ¼ 1þ e−β

�Rε3 þ e−β
�ε3 . Looking for the values of

r1 and r2 that give rise to a vanishing ΔEc, we obtain the
numerical results reported in Fig. 2, where we can
appreciate that only under very stringent conditions on
the eigenvalues of ρ̂ one obtains a saturation of the
inequality. For fixed R, all suitable eigenvalue pairs are
confined to a single curve within the total ðr1; r2Þ plane.
Beyond finite-dimensional systems, our results can also

be directly applied to bosonic Gaussian states. By

definition, these are related to a thermal state by a unitary
transformation. As a consequence, they saturate the upper
bound in Eq. (7). See the Supplemental Material [101] for a
detailed example.
Summary and conclusions.—In summary, in this Letter

we have highlighted the role of quantum coherence in work
extraction processes, by identifying a contribution to the
ergotropy that precisely corresponds to initial coherence in
the energy basis. This is obtained by breaking the optimal,
ergotropic, unitary cycle into an initial incoherent unitary
operation, followed by a second unitary cycle throughwhich
one extracts work by exhausting the coherence. We have
analyzed this coherent ergotropic contribution by exploring
its range of possible values, which we have identified in
terms of twobounds that can be saturated in specific cases. In
particular, we discovered that the tightness of the upper
bound is intimately related to the concept of bound ergo-
tropy—a form ofwork potential that becomes available only
when processing multiple identical copies of the system
together. Finally, we have illustrated our results with the
simplest nontrivial examples of a qubit and a qutrit, as well
as a single-mode bosonicGaussian state. The latter opens the
possibility for future analysis of work extraction in con-
tinuous variable systems beyond unconstrained unitaries on
single modes, considering, for instance, Gaussian opera-
tions, multiple modes, or both [106–110].
As quantum coherence is arguably the most primordial

nonclassical effect in nature, we expect the framework
described here to prove useful for the experimental char-
acterization of work production in quantum heat engines
[15,16], and, more generally, to help reveal and quantify the
delicate fingerprints of genuinely quantum effects in non-
equilibrium thermodynamic processes.
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