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Unlike the entanglement of quantum states, very little is known about the entanglement of bipartite
channels, called dynamical entanglement. Here we work with the partial transpose of a superchannel, and
use it to define computable measures of dynamical entanglement, such as the negativity. We show that a
version of it, the max-logarithmic negativity, represents the exact asymptotic dynamical entanglement cost.
We discover a family of dynamical entanglement measures that provide necessary and sufficient conditions
for bipartite channel simulation under local operations and classical communication and under operations
with positive partial transpose.
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Introduction.—Quantum entanglement [1,2] is univer-
sally regarded as the most important quantum pheno-
menon, signaling the definitive departure from classical
physics [3]. Its importance ranges across different areas of
physics, from quantum thermodynamics [4–14], to quan-
tum field theory [15–17] and condensed matter [18–20]. In
quantum information it is a resource in many protocols that
cannot be implemented in classical theory, such as quantum
teleportation [21], dense coding [22], and quantum key
distribution [23].
An even more crucial aspect of physics is that all systems

evolve. This is described by quantum channels [24–26].
Given the importance of entanglement, a natural question is
how physical evolution interacts with it. For example, one
can wonder how much entanglement a given evolution
creates or consumes.
To this end, in this Letter, which is a concise presentation

of the most significant results of our previous work [27], we
push entanglement out of its boundaries to the next level:
from quantum states (static entanglement) to quantum
channels (dynamical entanglement), filling an important
gap in the literature (an independent work in this respect is
Ref. [28]). Preliminary work was done in Refs. [29–35], but
here we study the topic in utmost generality, using resource
theories [36–45]. With them, the idea of entanglement as a
resource can be made precise. Resource theories have
recently attracted considerable attention [43], producing
plenty of important results in quantum information
[1,2,13,46–49]. Resource theories are particularly mean-
ingful whenever there is a restriction on the set of quantum
operations that can be performed, usually coming from the
physical constraints of a task an agent is trying to do [43].
Looking closely at the entanglement protocols men-

tioned above [21,22], one notices that a state is converted
into a particular channel [50,51]. Thus, the need of a
framework that goes beyond the conversion between static

entangled resources is built in the very notion of entangle-
ment as a resource. In other terms, we want to treat static
and dynamical resources on the same grounds. We do so by
phrasing entanglement theory as a resource theory of
quantum processes [43,52–54]. In this setting, the generic
resource is a bipartite channel [55,56], instead of a bipartite
state.
In this Letter, we start from the simulation of bipartite

channels with local operations and classical communica-
tion (LOCC) [57–59], and we derive a family of convex
dynamical entanglement measures that provide necessary
and sufficient conditions for the LOCC simulation of
channels.
The key tool for the remainder of the letter is a

generalization of partial transpose [60,61]. This allows
us to define superchannels with positive partial transpose
(PPT) [62], which constitute the largest set of super-
operations to manipulate dynamical entanglement, also
encompassing the standard entanglement manipulations
involving LOCC. In this setting, we define measures of
dynamical entanglement that can be computed efficiently
with semidefinite programs (SDPs). Specifically, one of
them, the max-logarithmic negativity, quantifies the
amount of static entanglement needed to simulate a channel
using PPT superchannels.
Finally, with the same generalization of the partial

transpose, we discover bound dynamical entanglement,
whereby it is not possible to produce entanglement out of a
class of channels—PPT channels [63,64]—that generalize
PPT states [60,61].
In this Letter, physical systems are denoted by capital

letters (e.g., A) with AB meaning A ⊗ B. Working on
quantum channels, it is convenient to associate two
subsystems A0 and A1 with every system A, referring,
respectively, to the input and output of the resource. In the
case of static resources, we take A0 to be one dimensional.
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A channel from A0 to A1 is indicated with a calligraphic
letterN A ≔ N A0→A1

. Superchannels are denoted by capital
Greek letters (e.g., Θ), and the action of superchannels on
channels by square brackets. Thus ΘA→B½N A� indicates the
action of the superchannel Θ on the channel N A.
LOCC simulation of bipartite channels.—To manipulate

dynamical resources, one needs quantum superchannels
[65,66], which are linear maps sending quantum channels
to quantum channels in a complete sense, i.e., even when
tensored with the identity superchannel. This means that if
N RA is a quantum channel, ΘA→B½N RA� is still a quantum
channel, for any R. Superchannels can be all realized
concretely with a preprocessing channel and a postprocess-
ing channel, connected by a memory system [65,66].
Specifically, an LOCC superchannel, used in LOCC
simulation, consists of LOCC pre- and postprocessing,
and is represented in Fig. 1. These superchannels are
relevant when one is concerned with channel simulation
in bipartite communication-type scenarios where only
classical communication is allowed between the parties
[57,58] (e.g., in teleportation [21]).
Recall that with one qubit maximally entangled state

(also known as an ebit), thanks to quantum teleportation
[21], we can simulate a qubit noiseless channel from Alice
to Bob using an LOCC scheme, and vice versa [50,51].
Therefore one ebit—a static resource—is equivalent to a
dynamical one: a qubit channel. With a pair of such
channels at hand, from Alice to Bob and vice versa, we
can implement, using LOCC, all bipartite channels between
the two parties when they both have qubit systems. This
means that such a pair of channels is the maximal resource.
This is illustrated in Fig. 2(a). In Fig. 2(b) we show that in
the same situation the swap operation is another maximal
resource, equivalent to 2 ebits.
In entanglement theory, a function f is a measure of

dynamical entanglement if fðΘ½N AB�Þ ≤ fðN ABÞ, where
Θ is an LOCC superchannel. It is conventional to assume
that f vanishes on all separable channels [63,67,68], which
are regarded as the free resources in the theory of
dynamical entanglement; but this is not essential.
The very definition of a measure of dynamical entangle-

ment indicates that f gives us a necessary condition for the
simulation of channel M starting from channel N and

using an LOCC superchannel Θ. Indeed, if such a super-
channel exists, namely, M ¼ Θ½N �, then fðMÞ ≤ fðN Þ.
However, here we construct a family of convex measures of
dynamical entanglement that also give us a sufficient
condition for LOCC simulation. For any bipartite channels
P and N , define

EPðN Þ ¼ sup
ΘLOCC

Tr½JPJΘ½N ��; ð1Þ

where J denotes the Choi matrix of the channel in the
superscript, and Θ is a generic LOCC superchannel. Note
that these functions need not vanish on separable channels.
It is possible to show that each function EP , with P ranging
over all bipartite channels, can be computed using a conic
linear program [27] (subsection 3 C).
Theorem 1.—In the theory of dynamical entanglement,

a channel N can be LOCC-converted into a channel M
if and only if EPðN Þ ≥ EPðMÞ for every bipartite
channel P.
The proof is in Ref. [27] (subsection 3 C). Since we need

to consider all bipartite channels P, this family of measures
of dynamical entanglement is not so practical to work with.
Unfortunately, one cannot expect to find a finite family of
such monotones, as shown in Ref. [69].
Given two channels N and M, to determine if the

former can be LOCC-converted into the latter, we can
alternatively compute their conversion distance, defined
following similar ideas to Ref. [70]:

dLOCCðN → MÞ ¼ 1

2
inf

ΘLOCC
kΘ½N � −Mk⋄: ð2Þ

FIG. 1. Simulation of the channelMA0B0 from the channelN AB
with an LOCC superchannel, which has LOCC pre- and post-
processing. Notice the presence of a memory system for each of
the two parties (A2 and B2, respectively).

FIG. 2. (a) Simulation of an arbitrary bipartite channel N A0B0

with two noiseless channels from Alice to Bob and vice versa.
(b) Simulation of an arbitrary bipartite channel N A0B0 with the
swap resource and an LOCC superchannel (the postprocessing is
shaded in pink).

PHYSICAL REVIEW LETTERS 125, 180505 (2020)

180505-2



If this distance is zero, we can convert N into M using a
superchannel in the topological closure of LOCC super-
channels [71]. Again, this distance can be calculated using
a conic linear program [27] (subsection 3 D), thanks to the
results in Refs. [54,72].
PPT superchannels.—In entanglement theory, one of the

most practical tools to determine whether a state is
entangled is the partial transpose [60,61]. One defines
PPT states as the bipartite states ρAB such that T BðρABÞ ¼
ρTB
AB is still a valid state, where T denotes the transpose map
[60,61]. Recall, however, that the set of PPT states is larger
than the set of separable states, due to the existence of
bound entangled states [73]. One then defines a PPT
channel to be a bipartite channel N AB such that, applying
the transpose map on Bob’s input and output, we get
another valid channel N Γ

AB ≔ T B1
∘N AB∘T B0

[63,64].
Note that the set of PPT channels is larger than the set
of LOCC channels. It is not hard to show that PPT channels
are also completely PPT preserving, for they preserve PPT
states even when tensored with the identity channel [63,64].
Finally, the Choi matrix of a PPT channel N AB is such that
ðJNABÞTB ≥ 0. PPT states and operations can be regarded as
free; therefore, anything that is not PPT—which we call
NPT—will be a resource. For this reason, this resource
theory is called the resource theory of NPT entanglement.
As it often happens in resource theories, one considers a
larger set of operations to get upper and lower bounds for
the relevant figures of merit, especially when the interesting
resource theory is mathematically hard to study, such as the
LOCC theory [74,75]. This is precisely why we study NPT
entanglement.
Here we generalize partial transpose, defining the trans-

pose supermapϒ asϒ½N A� ¼ T A1
∘N A∘T A0

. Note that the
Choi matrix ofϒ½N A� is the transpose of the Choi matrix of
N A. In this way, PPT channels can be characterized in a
similar way to PPT states: PPT channels are those bipartite
channels such that ϒB½N AB� is still a valid channel.
Now we iterate the previous construction to define PPT
superchannels.
Definition 2.—A superchannel ΘAB→A0B0 is PPT if

ΘΓ
AB→A0B0 ≔ ϒB0∘ΘAB→A0B0∘ϒB is still a valid superchannel.
These superchannels enjoy some remarkable properties.
Lemma 3.—The following are equivalent: (1) ΘAB→A0B0

is a PPT superchannel. (2) ΘAB→A0B0 is completely PPT
preserving. (3) ðJΘABA0B0 ÞTBB0 ≥ 0, where JΘABA0B0 is the Choi
matrix of the superchannel Θ [66,76–79].
A proof of this result can be found in Ref. [27]

(subsection 5 A). Property 2 means that PPT superchannels
preserve PPT channels in a complete sense. Property 3 tells
us that PPT superchannels are the same objects that
appeared in Ref. [62]. Despite the fairly simple condition
defining PPT superchannels at the level of Choi matrices,
we do not know if all of them can be realized with PPT pre-
and postprocessing. When this happens, we call them
restricted PPT superchannels. It is not hard to show that

restricted PPT superchannels are indeed PPT superchannels
in the sense of definition 2. Instead, we conjecture that the
converse is not true, so we are really considering a larger set
of superchannels. This is one of the main differences from a
related work by Wang and Wilde [35]: there the authors
study only restricted PPT superchannels, and they do not
consider bipartite channels, but only one-way channels
from Alice to Bob (or vice versa).
Our approach brings a lot of mathematical simplifica-

tions. For instance, if we replace LOCC with PPT in
Eqs. (1) and (2), the NPT entanglement measures and the
conversion distance become computable efficiently with
SDPs [see Ref. [27] (subsections 5 B and 5 C)]. However,
note that this family of NPT entanglement monotones will
not provide a sufficient condition for the convertibility
under LOCC superchannels.
New measures of dynamical entanglement.—Since PPT

channels contain LOCC channels, PPT superchannels
contain LOCC ones. Thus, measures of NPT dynamical
entanglement (i.e., monotonic under PPT superchannels)
are also measures of LOCC dynamical entanglement (i.e.,
monotonic under LOCC superchannels). As seen above,
working with PPT superchannels is mathematically sim-
pler. For this reason, focusing on the PPT simulation of
channels we obtain measures of LOCC dynamical entan-
glement that are easily computable.
The first example in this respect is the negativity [80],

defined for states as NðρABÞ ¼ ½kT BðρABÞk1 − 1�=2. The
generalization to bipartite channels is straightforward:
replace the trace norm with the diamond norm, and the
transpose map T B with the transpose supermap ϒB.

NðN ABÞ ¼
kϒB½N AB�k⋄ − 1

2
: ð3Þ

Contextually, the logarithmic negativity is defined as

LNðN ABÞ ¼ log2kϒB½N AB�k⋄: ð4Þ

We prove that these are measures of dynamical entangle-
ment that can be computed efficiently with an SDP
[cf. Ref. [27] (subsection 5 C)].
Now we introduce a new measure of NPT dynamical

entanglement, called max-logarithmic negativity (MLN)
(cf. Ref. [81]). It is a generalization of the notion
of κ-entanglement introduced in Ref. [35]. The MLN is
defined as

LNmaxðN ABÞ≔ log2inf
PAB

fmaxfkPA0B0
k∞;kP

TB0
A0B0

k∞gg; ð5Þ

where PAB is a matrix subject to the constraints −PTB
AB ≤

ðJNABÞTB ≤ PTB
AB and PAB ≥ 0. Here PA0B0

denotes
TrA1B1

½PAB�. We can show that the MLN is an additive
measure of dynamical entanglement, computable with an
SDP [see Ref. [27] (subsection 5 C)].
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Despite its rather complicated definition, the MLN has a
nice operational interpretation, which generalizes the
results in Refs. [35,82]. Consider the task of simulating
n parallel copies of the bipartite channel N AB out of the
maximally entangled state jϕþ

miA0B0
of Schmidt rank m

using PPT superchannels (which, in this case, take the form
of PPT channels). Recall that jϕþ

miA0B0
is, up to a scaling

factor 2, the maximal resource in the theory of entangle-
ment for bipartite channels, as we noted above. We require
that the conversion of jϕþ

miA0B0
intoN AB be exact for every

n. We want to study the asymptotic entanglement cost of
preparing N AB according to this PPT protocol, viz. the
minimum Schmidt rank of maximally entangled states
consumed per copy of N AB produced when n → þ∞.
Remarkably, we show that this cost is given precisely by the
MLN. Clearly, the use of PPT superchannels is not so
physically motivated, but it provides a simple lower bound
to the more meaningful calculation of the entanglement
cost under LOCC superchannels [35,82].
Theorem 4.—The exact asymptotic NPT cost of a

bipartite channel N AB is LNmaxðN ABÞ.
A proof of this result can be found in Ref. [27]

(subsection 5 D). We can prove that the MLN is an upper
bound for another entanglement measure, the NPT
entanglement generation power EPPT

g [29,52–54]
(cf. Supplemental Material [83]):

EPPT
g ðN ABÞ ≤ LNmaxðN ABÞ:

Bound entanglement for bipartite channels.—Dual to the
calculation of the cost of a bipartite channel, we have the
distillation of ebits out of a dynamical resource. It is known
that for some entangled static resources this is not possible:
it is the phenomenon of bound entanglement [73], which
occurs whenever we have a PPT entangled state.
Is it possible to distill ebits out n copies of a PPT channel

N AB? Now, when we have n copies of a channel, the timing
in which they are available becomes relevant: dynamical
resources have a natural temporal ordering between input
and output. Indeed, unlike states, they can also be composed
in nonparallel ways, e.g., in sequence. Therefore, when
manipulating dynamical resources, we also need to specify
when and how they can be used (see also Refs. [27,53]).
This opens up the possibility of using adaptive schemes
[28,32,33,84]: if we have n resources N 1;…;N n that are
available, respectively, at times t1 ≤ t2 ≤ … ≤ tn, the most
general channel that can be simulated with these resources is
given by a free n-comb [52,53,76,77,85–88], depicted in
Fig. 3 in the case of a PPT comb. Specializing this idea to the
case of dynamical entanglement, this amounts to considering
an LOCC n-comb, where all the nþ 1 channels E1;…; Enþ1

in Fig. 3 are LOCC. Then we plug the n copies ofN AB into
its n slots.
Instead of LOCC combs, we consider PPT combs, which

are defined as the combs for which the composition of

channels Enþ1∘…∘E1 in Fig. 3 is a PPT channel. This is
equivalent to requiring that the Choi matrix of the n-comb
[27,76,77] is the Choi matrix of a PPT channel. PPT combs
will give us an upper bound on the amount of ebits
generated in an LOCC procedure. However, again, we
do not know if this implies that each channel E1;…; Enþ1 is
PPT, but we conjecture it is not the case.
By the mathematical properties of PPT combs and PPT

channels, we can show that no ebits can be distilled out of
PPT channels even with the most general adaptive PPT
scheme [see Ref. [27] (section 7)]. Since this is an upper
bound for LOCC adaptive schemes, we conclude that no
entanglement distillation from PPT channels is possible
under LOCC protocols either.
Theorem 5.—It is impossible to distill entangled ebits

from PPT channels under any adaptive schemes in any
resource theory of dynamical entanglement.
As a result, we find an example of a bound

entangled POVM.
Example 6.—Recall that a POVM can be viewed as a

quantum-to-classical channel. Let βA0B0
be any PPT bound

entangled state of a bipartite system A0B0, and consider
the binary POVM fβA0B0

; IA0B0
− βA0B0

g. Since both βA0B0

and IA0B0
− βA0B0

have positive partial transpose, it follows
that this POVM is a PPT channel. As such, it cannot
produce distillable entanglement. This means it is a bound
entangled POVM.
Conclusions and outlook.—In this Letter, we addressed

dynamical entanglement as a resource theory of quantum
processes. This is a major step in understanding the role of
entanglement in quantum theory, for it allows us to treat
static and dynamical entanglement on the same grounds
[50,51], which is something that had been missing since the
inception of the very first quantum information protocols
[21,22]. We found a set of measures of dynamical entan-
glement yielding necessary and sufficient conditions for
LOCC channel simulation. Then we generalized the key
tool of partial transpose, defining PPT superchannels.
Working with them, we obtained measures of dynamical
entanglement that can be computed with SDPs. This
remarkable fact, which did not appear in previous works
on PPT superchannels (e.g., Ref. [35]), is a consequence of
our more relaxed definition of PPT superchannels
(definition 2). This is not the only novelty with respect
to Ref. [35]: we were able to generalize their notion of
κ-entanglement with the max-logarithmic negativity
[Eq. (5)]. Finally, we showed that we can distill no ebits

FIG. 3. A PPT n-comb acts on n bipartite channels N j, e.g., to
distill ebits.

PHYSICAL REVIEW LETTERS 125, 180505 (2020)

180505-4



under any adaptive strategies out of PPT channels. This
extends the known result for PPT states [73], and led us to
the discovery of bound entangled POVMs.
Clearly, our work just scratches the surface of a whole

unexplored world, opening the way for a thorough study of
the new area of dynamical entanglement. On a grand scale,
our findings lead naturally to several directions that can be
explored anew. Think, e.g., of multipartite entanglement
[2], or of the whole zoo of entanglement measures [1,2] to
be extended to channels. Moreover, our results for LOCC
superchannels can be translated to local operations and
shared randomness (LOSR) superchannels [89–92], which
are a strict subset of LOCC ones. LOSR superchannels
were proved essential for the formulation of resource
theories for non-locality [92]: they define the relevant
notion of dynamical entanglement in Bell and common-
cause scenarios. This intriguing research direction deserves
a comprehensive study in the future.
Finally, providing us with a more general angle, research

findings in the resource theory of dynamical entanglement
can also help us gain new insights into one of the major
open problems of quantum information theory: the exist-
ence of NPT bound entangled states [93–95].
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