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We have implemented a Walsh-Hadamard gate, which performs a quantum Fourier transform, in a
superconducting qutrit. The qutrit is encoded in the lowest three energy levels of a capacitively shunted flux
device, operated at the optimal flux-symmetry point. We use an efficient decomposition of the Walsh-
Hadamard gate into two unitaries, generated by off-diagonal and diagonal Hamiltonians, respectively. The
gate implementation utilizes simultaneous driving of all three transitions between the three pairs of energy
levels of the qutrit, one of which is implemented with a two-photon process. The gate has a duration of
35 ns and an average fidelity over a representative set of states, including preparation and tomography
errors, of 99.2%, characterized with quantum-state tomography. Compensation of ac-Stark and Bloch-
Siegert shifts is essential for reaching high gate fidelities.
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In recent years, significant progress has been made
toward the implementation of quantum computers.
Current efforts are mainly focused on encoding quantum
information using two-state systems, or qubits. Using
multilevel systems, or qudits, instead of qubits to perform
quantum information processing is a developing field that
promises advantages in a number of areas of quantum
information. Universal quantum control of qudits and
quantum error correction approaches have been explored
theoretically [1–3]. Recent theoretical work suggests that
quantum error correction with qudits has potential advan-
tages over qubit-based schemes [4–7]. The experimental
implementation of quantum computing based on qudits is
still largely unexplored. Besides quantum computing,
qudits have been explored as alternatives to qubits in other
areas of quantum information, as an improved platform for
quantum metrology [8] and quantum communication [9].
In this Letter, we report the implementation of the

generalized Walsh-Hadamard gate in a superconducting
three-state qudit, or qutrit. The Walsh-Hadamard gate is
one of the elementary gates in qudit control, relevant for
error correction [1,2] and the implementation of the
quantum Fourier transform in single- and many-qudit
systems [10]. We use a fast single-pulse implementation
of the gate based on a single rotation in the qutrit space.
We note that superconducting devices provide a natural
platform for the exploration of the physics of qutrits, with
work to date including basic control and tomography [11],
emulation of spin dynamics [12] and topological states of
matter [13], the use of the third level of a qutrit to facilitate
two-qubit gates [14], wave mixing [15], holonomic gates

[16], electromagnetic induced transparency [17], demon-
stration of quantum contextuality [18], and adiabatic state
transfer protocols [19].
There have been several studies in the literature on

decomposing qudit gates into sequences of simple steps,
e.g., into a sequence of gates that each operates on two
quantum states [20–22]. In this work we implement the
Walsh-Hadamard gate for a qutrit, given by
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using a decomposition that only requires two steps.
Specifically, UWH ¼ UdUo, with Uo ¼ expð−iGotÞ
and Ud ¼ expð−iGdtÞ. The generators Go ¼
ðP0≤j<k≤2mjkjjihkjÞ þ H:c: and Gd ¼ diagðϕ0;ϕ1;ϕ2Þ.
We note that there are multiple distinct decompositions
of this type with different values of the complex numbers
m01, m02, and m12 and real numbers ϕ0, ϕ1, and ϕ2 and we
chose the decomposition that results in the shortest pulse
duration for a given drive amplitude. This type of decom-
position is well suited for superconducting circuits where
microwave-based control allows for the application of
broadband signals containing multiple frequency tones that
can simultaneously drive transitions between different
levels, allowing to readily implement Go. The effect of
the diagonal unitary Ud can be implemented without
applying any additional pulses, but rather by shifting the
phases of the drive fields in the next resonant control
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pulses. In our experiment, these phase shifts are applied to
the tomography pulses. We note that a decomposition of
qutrit gates based on a single pulse with detuned tones
was proposed in Ref. [23]. Simultaneous driving of
three-state subspaces in superconducting devices was
applied to quantum emulation [13] and adiabatic transfer
protocols [19].
The device used in our experiments, shown in Fig. 1(a),

is formed of a superconducting loop with three Josephson
junctions and three large capacitor pads. The device is
capacitively coupled to a coplanar waveguide half-
wavelength resonator for dispersive readout and to a
transmission line terminated by a capacitor pad for control
[24]. Similar devices, based on three Josephson junction
loops with capacitive shunts, were employed as qubits
encoded in the lowest two energy levels [25–27]. We
employ control pulses generated using direct synthesis by a
fast arbitrary waveform generator, model Tektronix
TEK70001A, with a sampling rate of 50 GS=s. The pulses
consist of single- and multitone signals with an envelope
that has cosine shape rise and fall parts and a flattop. The
device loop is biased with a magnetic flux generated by
external superconducting coils. The device is placed inside
a sample holder at the mixing chamber of a dilution
refrigerator at 27 mK. All transmission lines contain
attenuators, microwave low-pass filters and infrared filters.

We first perform spectroscopy measurements to charac-
terize the qutrit. Figure 1(b) shows the results of spectro-
scopy of the device at the flux-symmetry point Φ ¼ Φ0=2.
We identify the 0–1 and 1–2 transitions at frequencies
ω01 ¼ 2π × 1.146 GHz and ω12 ¼ 2π × 5.693 GHz,
respectively. The 0–2 transition, which is forbidden at
the symmetry point, is visible as a two-photon excitation
process at frequency ω2p

02 ¼ 2π × 3.420 GHz. The 0–1 and
1–2 transition peak widths change linearly with driving
amplitude whereas the 0–2 peak width has a quadratic
dependence on the applied driving amplitude, as expected
for one and two photon processes respectively. Figure 1(c)
shows the flux dependence of the 0–1 and 1–2 transition
frequencies. The spectroscopy data is in excellent agree-
ment with calculations based on a circuit model (see
Supplemental Material [31]) where the capacitance matrix
is extracted from electromagnetic simulations and the
junction critical currents are slightly adjusted with respect
to nominal microfabrication values to fit the data.
Next, we discuss the qutrit thermal-state populations and

implementation of qutrit state tomography. The thermal-
state occupation probabilities Pth0 and Pth1 for states 0 and
1 are determined by comparing the amplitudes of the Rabi
oscillations in the 0–1 transition with two different initial
states: the qutrit thermal state with populations of states 1
and 2 swapped, and the thermal state with the populations
of states 0 and 2 swapped [24]. Here, we ignore the
thermal-state population Pth2 of state 2, which gives a good
approximation for Pth0 and Pth1 given that the temperature
is low relative to the frequency of the 1–2 transition. The
average thermal-state population in the ground state is
Pth0 ¼ 0.74� 0.01. State measurement is done using dis-
persive readout [11,28]. The average homodyne voltage
Vh ¼ P0Vh0 þ P1Vh1 þ P2Vh2, where Vh0, Vh1, and Vh2
are average voltages corresponding to the three qutrit states
and P0, P1, and P2 are the occupation probabilities of the
qutrit states immediately prior to the measurement. The
experimental procedure used to determine the voltage
levels Vh0, Vh1, and Vh2 is given in the Supplemental
Material [31].
To reconstruct the density matrix ρ of the qutrit state, we

use a quantum-state tomography procedure in which the
homodyne voltage is measured following the application of
each pulse from a set of nine tomography pulses (see
Table I). The tomography pulses are designed to optimize
the readout by utilizing the large difference between Vh1 and
Vh0; this set of pulses is different from those used in the
experiment of Bianchetti et al. [11], where contrast is
maximum between states 1 and 2. The tomography pulses

consist of combinations of rotations, denoted by R01ð12Þ
α ðθÞ,

where α ¼ x, y is the rotation axis and θ is the rotation angle.
The implementation of the Walsh-Hadamard gate dis-

cussed above requires the simultaneous driving of all three
qutrit transitions such that the effective Hamiltonian in the
rotating frame has nonzero values for all off-diagonal

(a)

(b) (c)

FIG. 1. (a) Schematic and microscope images of the device
used in the experiment. The device is coupled to a coplanar
waveguide resonator with characteristic impedance Z0 for read-
out and a drive pad for control with pulses generated by an
arbitrary waveform generator. The inset shows the magnified
view of the device junctions and the loop. (b) Readout homodyne
voltage Vh versus the frequency of the spectroscopy tone applied
to the qutrit at the flux-symmetry point, showing the 0–1, two-
photon 0–2, and 1–2 transitions, respectively. The solid lines
represent Lorentzian fits. (c) Peak positions for the 0–1 (blue
squares) and 1–2 (red dots) transitions versus applied magnetic
flux. The solid lines represent the fits with the circuit model based
on the calculated qutrit energies.
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matrix elements. While the 0–1 and 1–2 transitions are
allowed and can be implemented by standard resonant
driving, the 0–2 transition is forbidden at the symmetry
point, and is therefore implemented as a two-photon
process. Figure 2(a) shows the Rabi frequency of the
two-photon oscillations between states 0 and 2 versus
the detuning δ2p02 ¼ ðω01 þ ω12Þ=2 − ω2p

d;02, where ω2p
d;02 is

the driving frequency. The resonant Rabi oscillations have
a minimum frequency of 2π × 7.2 MHz at a detuning
δ2p02 ¼ −2π × 3.5 MHz. The fact that the resonance for
the Rabi oscillations occurs at a nonvanishing detuning is
due to fact that the strong field of 0–2 two-photon drive
induces non-negligible ac-Stark and Bloch-Siegert shifts on

the energy levels. On resonance, the frequency of the Rabi
oscillations depends quadratically on the drive amplitude
[Fig. 2(b)], characteristic of a two-photon process. We
performed tomography experiments for various durations
of the 0–2 Rabi pulse, as shown in Figs. 2(c) and 2(d). The
population oscillates between states 0 and 2, while the
population of state 1 remains relatively constant at the level
of the thermal state. The argument of the h0jρj2i element of
the density matrix ρ, shown in Fig. 2(d), is constant during
each half-oscillation period, indicating rotation around a
constant axis in the fj0i; j2ig subspace. The two data sets
in Fig. 2(d) correspond to two values of the phase of the
two-photon driving tone, different by π=4. The phase of
h0jρj2i changes by twice the driving tone phase, which is
another indication that the transition is a two-photon
process. The results of the two-photon driving tomography
experiment agree with numerical simulations based on the
multilevel Hamiltonian, with the amplitude of the driving
voltage at the qutrit being the only adjustable parameter.
We note that in the numerical simulations we only obtained
good agreement when taking into account at least the
lowest seven energy levels, underscoring the importance of
ac-Stark and Bloch-Siegert shifts in the experiment.
We next present the characterization of the

Walsh-Hadamard gate. We use a decomposition where
the off-diagonal generator has coefficients m01 ¼
0.3491þ 0.6046i, m12 ¼ −0.6981, and m02 ¼ 0.3491þ
0.6046i and the diagonal generator has elements
ϕ0 ¼ 6.1086, ϕ1 ¼ 4.0143, and ϕ2 ¼ 4.0143. As men-
tioned above, the off-diagonal Hamiltonian that generates
Uo is obtained by the simultaneous driving of the
transitions 0–1, 1–2, and 0–2, with the latter being
a two-photon process. The Rabi frequencies are
Ω̃01 ¼ Ω̃12 ¼ Ω̃02 ¼ 2π × 7.2 MHz. The Rabi frequencies
are all equal because jm01j ¼ jm02j ¼ jm12j, and they are
maximized within the available voltage range of our pulse
generation setup. We note that the control signal amplitude
is not limited by the qutrit properties and larger driving
amplitudes could in principle be reached by increasing
signal transmission and the coupling to the capacitive
driving line. During the control pulse, the drive frequencies
are dynamically adjusted to match the transition frequency
with ac-Stark and Bloch-Siegert shifts included, with
the latter dependent on the driving amplitude (see
Supplemental Material [31]).
The frequency shift of the 0–1 transition, which includes

contributions from the ac-Stark and Bloch-Siegert shifts, is
experimentally determined as follows. A driving field is
applied with a detuning of 2π × 50 MHz from the 0–2
two-photon resonance. This detuning is chosen to be much
larger than the strength of the two-photon process (when
applied on resonance). Therefore, transitions between the 0
and 2 states are negligible, while the ac-Stark and Bloch-
Siegert shifts are almost the same as those induced in the
case of resonant driving. The shifts can then be measured

TABLE I. Set of pulses used in state preparation and state
tomography experiments.

State
prep.

Rotations Tomography
pulses

Rotations

p0 I u0 R01
x ðπÞ

p1 R01
x ðπÞ u1 R01

x ðπ=2Þ
p2 R12

x ðπÞR01
x ðπÞ u2 R01

y ðπ=2Þ
p3 R01

x ðπ=2Þ u3 I
p4 R01

y ðπ=2Þ u4 R12
x ðπ=2ÞR01

x ðπÞ
p5 R12

x ðπ=2ÞR01
x ðπÞ u5 R12

y ðπ=2ÞR01
x ðπÞ

p6 R12
y ðπ=2ÞR01

x ðπÞ u6 R01
x ðπÞR12

x ðπ=2ÞR01
x ðπÞ

p7 R12
x ðπÞR01

x ðπ=2Þ u7 R01
x ðπÞR12

y ðπ=2ÞR01
x ðπÞ

p8 R12
x ðπÞR01

y ðπ=2Þ u8 R01
x ðπÞR12

x ðπÞR01
x ðπÞ

(a) (b)

(d)(c)

FIG. 2. Two-photon driving experiments. (a) Frequency of the
Rabi oscillations versus the detuning between the driving
frequency and the two-photon resonance frequency ðω01 þ
ω12Þ=2 for a given drive amplitude. The line is a quadratic fit.
(b) Two-photon resonant-driving Rabi frequency versus drive
amplitude. The line is a quadratic fit. (c),(d) Results of the
tomography experiments. Panel (c) shows the population of states
0 (blue squares), 1 (red disks), and 2 (green triangles), versus
Rabi pulse duration, with an oscillation frequency of
2π × 7.2 MHz. Panel (d) shows the phase of the 0–2 component
of the density matrix for two values of the phase of the driving
field: 0 (triangles) and π=4 (rhombuses).
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directly by applying a microwave pulse to drive the 0–1
transition and measuring the induced Rabi oscillations. The
driving frequency at which the Rabi oscillations have their
minimum frequency is a direct measure of the resonance
frequency, which includes the shifts caused by the strong
0–2 drive. The experimentally determined total shift of
2π × 9.4 MHz is in agreement with that obtained from
numerical simulations.
The diagonal Hamiltonian that generates Ud is effec-

tively embedded in the tomography pulses by shifting the
phases of the driving fields for the latter. The new
tomography analyzer pulses are given by ūi ¼ U†

duiUd.
The pulse sequence is shown in Fig. 3(a). The off-diagonal
Hamiltonian is applied on the prepared states pi followed
by the phase-shifted tomography pulses ūi to complete the
Walsh-Hadamard gate and to reconstruct the density matrix
ρ of the state after the gate.
The gate fidelity is measured with respect to the ideal

evolution of the prepared state under the gate Hamiltonian
in Eq. (1). Figure 3 shows the real (b) and imaginary
(c) elements of ρ where the gate is applied on the qutrit
thermal state. The state fidelity after the gate in this case is
99.8%. The difference between the reconstructed and the
expected density matrices are shown in Figs. 3(d) and 3(e)
for the real and imaginary parts, respectively. Table II
shows the fidelity values of the gate applied on nine
different prepared states. On average over the nine pre-
parations, the state fidelity at the end of the sequence is
observed to be 99.2� 0.1%. We estimate the error in the
evolution by applying a maximum likelihood estimation
procedure (see Supplemental Material [31]) together with
the errors associated with the state homodyne voltage

levels. We also utilize quantum process tomography to
quantify the process fidelity (see Supplemental Material
[31]). The process fidelity of the Walsh-Hadamard gate is
found to be 97.3%.
We next discuss numerical simulations of the evolution

of the set of states obtained by applying the pulses listed in
Table II to the qutrit steady state under the applied control
pulse. The simulations are based on the system
Hamiltonian with driving including the lowest seven
energy levels of the system. The transition strengths are
determined numerically with the circuit model including
the complete capacitance matrix (see Supplemental
Material [31]). The simulated fidelity of the off-diagonally
generated part of the gate is 99.8% (99.7%) without (with)
decoherence (see Supplemental Material [31]). To verify
the role of the relative phase of the driving tones, we
performed an experiment where the phase of the 0–2 two-
photon driving tone was changed around its nominal value,
based on the decomposition of the gate. Figure 4 shows the
measured average fidelity of states after preparation by the
pulses given in Table II and application of the Walsh-
Hadamard gate versus the 0–2 two-photon drive phase. The
data are in excellent agreement with the average fidelity
values obtained from numerical simulations (dashed line in
Fig. 4). We note that while the numerical simulations
require the inclusion of several higher levels to accurately
reproduce the experimentally observed driving strength and
level shifts, the experimental implementation of the gate
relies only on experimentally determined driving strengths
and level shifts.

(a)

(b) (c)

(d) (e)

ρ ρ

ρρ

FIG. 3. (a) Pulse sequence used in the experiments. (b) Real and
(c) imaginary parts of the reconstructed density matrix after the
gate is applied on the thermalized state shows a 99.8% gate
fidelity. The differences between the reconstructed and the
expected density matrices are shown for the real (d) and
imaginary (e) parts.

FIG. 4. Experimental (dots) and simulated (dashed curve)
fidelity of the state obtained by applying the control pulse to
the thermal state versus the relative phase of the 0–2 two-photon
drive.

TABLE II. Set of pulses used to prepare different states to
which the Walsh-Hadamard gate is applied and measured
fidelities.

State prep. (pi) Fidelity State prep. (pi) Fidelity

I 99.8% R12
x ðπ=2Þ R01

x ðπÞ 98.7%
R01
x ðπÞ 99.8% R12

y ðπ=2Þ R01
x ðπÞ 98.3%

R12
x ðπÞ R01

x ðπÞ 98.8% R12
x ðπÞ R01

x ðπ=2Þ 99.6%
R01
x ðπ=2Þ 99.8% R12

x ðπÞ R01
y ðπ=2Þ 98.5%

R01
y ðπ=2Þ 99.6%
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The results described above were obtained using the
thermal state as the initial state. While this procedure did
not pose a limitation for characterizing the qutrit gate, it is
relevant to consider the possibility to prepare high purity
initial states. To date, several initialization and state reset
protocols have been demonstrated with superconducting
qubits (see, e.g., [29,30]). In this work, we utilize a
cooling technique based on a Raman process that effec-
tively brings the qutrit 0–1 transition into resonance with
the readout resonator. The fact that the resonator has a
high resonance frequency and hence a small thermal
excitation probability creates an effectively cold environ-
ment for the qutrit. By controlling the rate of transferring
excitations between the qutrit and the resonator, the
cooled qutrit state reaches a maximum ground-state
probability of 0.94, a significant improvement over the
probability of 0.74 in the thermal state. With the cooled
state as the initial state for the Walsh-Hadamard gate, we
measure an average state fidelity of 97.3% and a quantum
process fidelity of 97.3%. While the process fidelity is
identical within experimental errors for thermal state and
cooling-based preparation, the average state fidelity is
slightly lower in the latter case. This is possibly due to
spurious excitation of the resonator having a reduced
effect in combination with the strong state preparation
pulses used in process tomography. The details and an
extended analysis of the cooling process and quantum
control on reset states are beyond the scope of the present
work and will be addressed in future work.
In conclusion, we have implemented a Walsh-Hadamard

gate in a superconducting qutrit. The implementation of the
gate relied on a two-step decomposition, which only
required the application of a single microwave pulse with
three tones coupling the three pairs of qutrit energy levels.
The experimentally characterized state fidelity after gate
control is 99.2%, in agreement with the results of numerical
simulations. We note that the ac-Stark and Bloch-Siegert
shifts of the qutrit energy levels have to be accounted for in
order to achieve a high fidelity gate. Our approach can be
generalized to higher dimensionality qudits. This work
demonstrates the potential of multitone multilevel control
in superconducting devices and opens interesting avenues
for exploration of superconducting qudits in quantum
computing and other areas of quantum science.
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