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Adiabatic quantum computing enables the preparation of many-body ground states. Realization poses
major experimental challenges: Direct analog implementation requires complex Hamiltonian engineering,
while the digitized version needs deep quantum gate circuits. To bypass these obstacles, we suggest an
adiabatic variational hybrid algorithm, which employs short quantum circuits and provides a systematic
quantum adiabatic optimization of the circuit parameters. The quantum adiabatic theorem promises not
only the ground state but also that the excited eigenstates can be found. We report the first experimental
demonstration that many-body eigenstates can be efficiently prepared by an adiabatic variational algorithm
assisted with a multiqubit superconducting coprocessor. We track the real-time evolution of the ground and
excited states of transverse-field Ising spins with a fidelity that can reach about 99%.
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Solving quantum ground-state problems is key for
applications in chemistry [1–4], materials science [5–7],
and beyond [8–10]. It is believed that there are no classical
algorithms for efficiently solving the general ground-state
problems due to the notorious sign problem [11]. In
contrast, quantum computing alleviates the sign problem
by directly operating with complex-value quantum states
and thus may provide a potential speed-up [12,13].
Adiabatic state preparation is a natural approach for
quantum ground-state problems [1,9,14]. Starting from
the ground state of a simple initial Hamiltonian H0, such
as jþi⊕N of H0 ¼ −

P
N
i¼1 σ

i
x, we would evolve to a

complex target Hamiltonian HT . The quantum adiabatic
theorem [15] guarantees that if the change is sufficiently
slow, the system will stay at its instantaneous eigenstate and
ultimately reach the ground state of HT . In certain cases it
may be possible to realize the evolving Hamiltonian
directly with suitable hardware; however, in many appli-
cations, including chemistry-related tasks, HT involves
nonlocal connectivity and high-degree terms that are
infeasible to implement.
Wemight resort instead to the flexibility of a fully digitized

gate-based quantum circuit. In this context, the recent
quantum-classical hybrid algorithms, such as quantum
approximate optimization algorithm [16] and the variational
quantum eigensolver [17], are a promising route toward
useful exploitation of small- and medium-scale quantum
computers. Generally, a hybrid algorithm would encode a

“trial” quantum state via a shallow parameterized quantum
circuit (i.e., the quantum coprocessor). A governing classical
computer iteratively adjusts the parameters and monitors the
output of the quantum circuit, ultimately seeking the param-
eters for which the output matches the ground state of HT .
The challenge is to achieve this in a fashion that can scale to
the case of hundreds or thousands of parameters; the
feasibility of this task is an active area of study [3].
Here, we marry together the adiabatic protocol with a

circuit-based noisy intermediate-scale quantum (NISQ)
coprocessor. This is enabled by recent theoretical work
showing that the general dynamical evolution of (both
closed and open) physical systems can be efficiently
simulated with variational quantum algorithms [18,19].
We demonstrate this variational algorithm to the adia-
batic dynamics of a 1D Ising spin chain model under-
going transverse-field driving.
In our algorithm, an N-qubit quantum state jψi is

approximately parameterized by the output jϕi of a low-
depth quantum gate circuit. This circuit ansatz consists
of some fixed single-qubit and two-qubit gates and L
embedding variable single-qubit rotation gates of angles

θ⃗ ¼ ðθ1; θ2;…; θLÞ, where the number of parameters

L ∼ polyðNÞ. That is jψðtÞi ≈ jϕðθ⃗Þi ¼ Uðθ⃗Þj0i.
Then the dynamics of a quantum state can be mapped to

the evolution of the parameters θ⃗. The 2N-dimensional
Schrödinger equation of quantum state jψðtÞi,
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∂
∂t jψðtÞi ¼ −iHjψðtÞiðℏ ¼ 1Þ; ð1Þ

becomes an L-dimensional ordinary differential equation
(ODE) of the variable θ⃗,

∂
∂t θ⃗ðtÞ ¼ M−1 · VðtÞ; ð2Þ

where the elements of matrix M and vector V are,
respectively [18],

Mi;j ¼ −Im
�∂hϕðθ⃗Þj

∂θi
∂jϕðθ⃗Þi
∂θj

�
;

ViðtÞ ¼ Re

�∂hϕðθ⃗Þj
∂θi HðtÞjϕðθ⃗Þi

�
: ð3Þ

If we know the coefficients M and V in the ODE, the
evolution of circuit parameters θ⃗ðtÞ can be efficiently
solved on a classical computer in polynomial time
∼OðL2Þ by direct numerical integration. However, the
coefficients of ODE are related to inner products of
quantum state jϕi, which are generally hard for a classical
computer to estimate due to its 2N dimension.
When noting that these coefficients can be efficiently

evaluated by a quantum computer, the ODE will be solved
efficiently through classical-quantum hybrid iterations. For
each step at time t, a quantum computer is used to estimate
the ODE’s coefficients M and V and then a classical

computer is used to integrate the equation with time
interval δt and update circuit parameters: θ⃗ðtþ δtÞ ¼
θ⃗ðtÞ þM−1 · VðtÞ × δt.
Next, we describe the related quantum circuit to estimate

the ODE’s coefficients. The matrix elements Mi;j are
related to the imaginary of an inner product of the form
h0jAj0i, where A ¼ ð∂θiU

†Þð∂θjUÞ by Eq. (3). This value
can be estimated by a Hadamard test circuit, shown in
Fig. 2(b), where one ancillary qubit implements a con-
trolled-A operation on the system qubits and then the
auxiliary is measured in the Z Pauli basis to obtain
Mij ¼ −Imh0jAj0i ¼ hZi. Considering the conjugate sym-
metry, the controlled A can be simplified and only two CZ

gates are left.
For the vector elements Vi, they are related to the

real part of an inner product h0jBðtÞj0i, where BðtÞ ¼
ð∂θiU

†ÞHðtÞU. Here, the controlled-B operation cannot be
directly implemented in a Hadamard test circuit due to the
nonunitarity of the Hamiltonian H is in general nonunitary.
We decompose the Hamiltonian to a sum of K Pauli terms
as HðtÞ ¼ P

K
l¼1 hlðtÞPl, where each Pauli operation Pl is

unitary and hlðtÞ is the time-dependent weighting co-
efficient. So, we have h0jBðtÞj0i ¼ P

K
l¼1 hlðtÞh0jBlj0i

with Bl ¼ ð∂θiU
†ÞPlU, which can be directly implemented

using controlled Bl in the Hadamard test circuits.
Now, we can obtain a vector element through ViðtÞ ¼
Reh0jBðtÞj0i ¼ P

K
l¼1 hlðtÞhZil by measuring these K

Hadamard test circuits [see Fig. 1(b)].

(a)

(b)

FIG. 1. Variational quantum simulation of dynamics. (a) Sketch of the variational algorithm. A shallow circuit ansatz Uðθ⃗Þj0i is used
to approximate the true wave function jψðtÞi with a polynomial number of parameters θ⃗ðtÞ. The Schrödinger equation is mapped to an

ordinary differential equation (ODE) according to M · ð∂=∂tÞθ⃗ðtÞ ¼ VðtÞ. The ODE’s coefficients M and VðtÞ are estimated on a
quantum coprocessor and the ODE is numerically integrated on a classical computer. (b) The Hadamard test circuits are used to estimate
Mij and ViðtÞ on the quantum coprocessor, respectively. In the circuit, H is the Hadamard gate and S is the phase gate. The unitary
operator A ¼ ð∂θiU

†Þð∂θjUÞ and Bl ¼ ð∂θiU
†ÞPlU, where U is the circuit of ansatz and Pl is the Pauli term in the time-dependent

Hamiltonian HðtÞ ¼ P
K
l¼1 hlðtÞPl.
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In addition, we note another estimating method for
vector element Vi, that does not use the Hadamard test.
Because of Eq. (3), we have

ViðtÞ ¼
1

2

∂
∂θi ðhϕðθ⃗ÞjHjϕðθ⃗ÞiÞ: ð4Þ

This vector element can be approximated by a finite
difference of the Hamiltonian expectation hHi, which
can be measured directly on the ansatz circuit. So, we
can obtain a vector element by measuring 2K Pauli
expectations.
Therefore, for each step, the measurement complexity on

quantum computers to update the ODE’s coefficients is
OðL2Þ and OðLKÞ for M and V, respectively, for a
quantum ansatz of L ∼ polyðNÞ parameters and a
Hamiltonian of K ∼ polyðNÞ Pauli terms. Combining the
computation complexity OðL2Þ of the numerical integra-
tion on classical computers, our hybrid method is efficient
to solve the quantum dynamics of an N-qubit system.
In our experiment, we focus on the 1D Ising model under

a transverse magnetic field for proof-of-principle demon-
stration. The time-dependent Hamiltonian with a periodic
boundary condition is

HðtÞ ¼ BðtÞH0 þ JðtÞHT; ð5Þ

with H0 ¼ −
P

j σ
j
x and HT ¼ −

P
j σ

j
zσ

jþ1
z . We set

JðtÞ ¼ t=T and BðtÞ ¼ 1 − t=T, which represent the
strength of spin-spin interactions and the strength of the
magnetic field, respectively. The change of the Hamiltonian
over the whole time period is shown in Fig. 2(a).
We first consider the Ising model of two spins. In various

experiments we start from the ground, first, second, and
third eigenstates of the Hamiltonian H0, given by j þ þi,
ðj þ −i � j −þiÞ= ffiffiffi

2
p

, and j − −i, respectively. The circuit
ansatze are shown in Fig. 2(b), which can cover the
quantum state manifold of full adiabatic paths. There are
parameters θ1 and θ2 in the circuits, controlling two single-
qubit gates with a rotation angle around the X and Z axis,

respectively. The circuit ansatze are helpful to simplify our
Hadamard test circuits while keep enough degrees of
freedom to test the algorithm.
In our experiments, we modified the algorithm’s work

flow to speed up the classical-quantum iterations. We in
advance estimated the ODE’s coefficients in the whole
ansatz parameter space on the quantum coprocessor, so the
classical integral can run continually by fast querying these
coefficients. The coefficients are generated in two steps.
(1) We first measure the coefficients on a discrete 20 × 20
grid of the parameter space (from 0 to 2π with a step size
π=10). (2) We then linearly interpolate the results of each
circuit to approximate the results that do not reside on
the grid.
The experiment was conducted in a superconducting

quantum processor of four working transmon qubits
[20,21] (also see Fig. S1 in Supplemental Material for
details [22]). The energy relaxation time T1 (dephasing
time T�

2) are 34.6, 39.1, 29.6, and 28.1 ð3.4; 4.3;
5.6; and 3.1Þ μs, respectively. The single-qubit rotation gate
[23] and two-qubit fast adiabatic controlled phase (CZ) gates
[24] are implemented in 30 and 60 ns, and have average gate
fidelities about 0.998(1) and 0.99(2) from randomized
benchmarking [25], respectively. The qubit readout errors
are 3.1%–9.4% for j0i states and 10.1%–16.2% for j1i
states, which are corrected by the inverse positive operator-
valued measure (POVM) matrices to generate a corrected
distribution [26].
We first applied the algorithm to the ground-state

dynamics. At each grid point ðθ1; θ2Þ, we measured the
value of M12, V1, and V2 by Hadamard test circuits, which
are shown in Fig. S3 [22]. These circuits were compiled to
run on the quantum coprocessor and the basic process of
circuit compiling is illustrated in Fig. S2 [22]). We
measured each circuit 5000 times to reduce the statistical
noise. We plot the measuredM12 in Fig. 3(a) and V1ðtÞ and
V2ðtÞ in Figs. 3(b) and 3(c) at time t ¼ T=2.
We then used iterative numerical integration θ⃗ðtþ δtÞ ¼

θ⃗ðtÞ þM−1 · VðtÞ × δt to solve the parameter trajectories
on a classical computer. The time step is set as δt ¼ 0.01.

(a) (b) (c)

FIG. 2. The quantum Ising model simulated in the experiment. (a) The adiabatic change of system Hamiltonians. (b) The circuit
ansatze for the eigenstates of the two-spin system. (i) is used for preparing the ground and the third-excited states, and (ii) is used to
prepare for the first- and second-excited states. (c) The circuit ansatz for the ground-state problem of the fully coupled three-spin system.
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The calculated parameter trajectories are shown in
Fig. 3(d), including the other three excited states.
We further evaluated the evolution of the system’s

energies and quantum state fidelities on a classical com-
puter by using the solved parameters. It reveals the quality
of the core adiabatic variational routine by excluding
the quantum state preparation and measurement errors.
The results are shown in Figs. 3(e) and 3(f). In Fig. 3(e),
we observe that the experimental results agree well with
the system eigenspectrum at all times, which verifies the
effectiveness of the adiabatic property. In Fig. 3(f), we find
that the average state fidelities are above 95% with
systematic oscillations.
We note that the fast oscillation is a phenomenon of

nonideal adiabatic following: due to the noise in the quantum
circuit, the dynamical ansatz does not fully match the
instantaneous eigenstate of the system Hamiltonian. This
oscillating departure does not expand during the evolution.
In particular, the fidelities of the four eigenstates at time T
are 99.5%, 98.8%, 99.6%, and 99.3%, respectively.
Next, we continue to investigate the evolution of the

ground state of a three-spin Ising Hamiltonian. The ground
states of H0 and HT are j þ þþi and ðj000i þ j111iÞ= ffiffiffi

2
p

,
corresponding to paramagnetic and ferromagnetic states,
respectively. The circuit ansatz to simulate the adiabatic
transition is shown in Fig. 2(c). Unlike the previous two-
qubit ansatze, the current ansatz does not exactly cover

all the quantum states during the evolution. As shown in
Fig. 4(f), the ideal fidelities in the intermediate evolution
are less than 97%. So, it provides an interesting case to
investigate the effect of adiabatic following across a
restricted subspace of the ansatz.
We measured the matrix M through Hadamard test

circuits and measured the vector V using a finite difference
of Eq. (4). That is, ViðtÞ ¼

P
K
l¼1 hlðtÞh∂θiPli=2, with

h∂θiPli≈
hϕðθ⃗þδ · e⃗iÞjPljϕðθ⃗þδ · e⃗iÞi−hϕðθ⃗ÞjPljϕðθ⃗Þi

δ
;

where δ ¼ 0.2 is the increment of parameter θi, e⃗i is the
unit vector along θi, and Pl is the Pauli term in the
Hamiltonian HðtÞ ¼ P

K
l¼1 hlðtÞPl. The circuits are shown

in Fig. S5 [22] and the results are shown in Figs. 4(a)–4(c).
In Fig. 4(d), we plot the parameter trajectory solved on the
classical computer with time step δt ¼ 0.01.
We plot the calculated energy and state fidelity of the

evolving state in Figs. 4(e) and 4(f), respectively. We
observe the expected characteristic oscillation in the
evolution due to nonideal adiabatic following. We also
verify the unexpected phenomenon: although the expres-
sive ability of the ansatz is limited in the middle time, the
evolution of quantum state fidelity recovers in the end. The
final state fidelity is 98.9%. It is an interesting question to
further investigate the nonmonotonicity of quantum state

-2 0 2

-2

0

2

P
ar

am
et

er
 θ

2

Parameter θ1

 |0>
 |1>
 |2>
 |3>

0 5 10

-2

-1

0

1

2

E
ne

rg
y

Time

 Exact
 |0>
 |1>
 |2>
 |3>

0 5 10

0.94

0.96

0.98

1.00

F
id

el
ity

Time

 |0>
 |1>
 |2>
 |3>

0 1 2 3 4 5 6
0

1

2

3

4

5

6

P
ar

am
et

er
 θ

2

Parameter θ
1

-0.39

-0.23

-0.06

0.09

0.26

0.42

0 1 2 3 4 5 6
0

1

2

3

4

5

6

P
ar

am
et

er
 θ

2

Parameter θ1

-0.45

-0.27

-0.09

0.08

0.26

0.45

0 1 2 3 4 5 6

-0.2

-0.1

0.0

0.1

0.2

Parameter θ1

(d) (e) (f)

(a) (b) (c)

FIG. 3. Experimental results of adiabatic variational dynamics of two spins. (a) The measuredM12. Note thatM12 is only dependent on
θ1 after the circuit compiling; M11 and M22 are always zero and M21 ¼ −M12 due to the symmetry from Eq. (3). (b),(c) The measured
V1ðtÞ and V2ðtÞ at time t ¼ T=2. (d) The simulated parameter trajectories of all four eigenstates. (e),(f) The calculated energies and
quantum state fidelities during the dynamics. The error bars are produced from 100 Monte Carlo simulations of the statistical fluctuation
of 5000 samples of each circuit.
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fidelity in general variational dynamics from the limited
expressive ability of the ansatz.
In these two basic examples, we realized a proof-of-

principle demonstration of adiabatic variational simulations
with circuit ansatz of depth 1. The demonstrated algorithm
flow can be directly applied to more generalized circuit
ansatz for complex Hamiltonians. A key problem in the
conventional variational algorithm with deep circuit ansatz
is the barren plateaus effect will degrade the gradient-based
classical optimization [27]. Our adiabatic-based algorithm
has a potential to use coherent dynamics to evade this
effect. We hope to test the algorithm with deeper circuit
ansatz in high-fidelity experiment in the next step.
When seeking to scale the algorithm to a large quantum

system, we would find that the fidelity of simulation
depends on two related issues: the choice of an appropriate
circuit ansatz and how to resist experimental noise.
Encouraging progress is being made in both topics.
A good ansatz circuit would be informed by knowledge

of the physical system being simulated, for example, the
conserved symmetries [28] and the physical intuition
[27,29]. Meanwhile, circuit noise can be significantly
reduced by hardware-level quantum circuit compilation
and suppressed with recently proposed error mitigation
methods such as techniques based on extrapolating differ-
ent experimental data [18,30–36].

In summary, we have reported the experimental
demonstration of a variational quantum algorithm to
simulate a system’s adiabatic dynamics. This method
avoids the high demand of quantum hardware in analog
or digital adiabatic state preparation while it is superior to
classical simulated annealing by exploiting quantum
coherence. Our work represents a new and promising
approach to quantum dynamics simulation and quantum
enhanced optimization on intermediate-scale quantum
computers.
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