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Deep learning has achieved impressive prediction accuracies in a variety of scientific and industrial
domains. However, the nested nonlinear feature of deep learning makes the learning highly nontransparent,
i.e., it is still unknown how the learning coordinates a huge number of parameters to achieve decision-
making. To explain this hierarchical credit assignment, we propose a mean-field learning model by
assuming that an ensemble of subnetworks, rather than a single network, is trained for a classification task.
Surprisingly, our model reveals that apart from some deterministic synaptic weights connecting two
neurons at neighboring layers, there exists a large number of connections that can be absent, and other
connections can allow for a broad distribution of their weight values. Therefore, synaptic connections can
be classified into three categories: very important ones, unimportant ones, and those of variability that may
partially encode nuisance factors. Therefore, our model learns the credit assignment leading to the decision
and predicts an ensemble of sub-networks that can accomplish the same task, thereby providing insights
toward understanding the macroscopic behavior of deep learning through the lens of distinct roles of
synaptic weights.
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Introduction.—As deep neural networks become an
increasingly important tool in diverse domains of scientific
and engineering applications [1–5], the black box proper-
ties of the tool turn out to be a challenging obstacle
puzzling researchers in the field [6]. In other words, the
decision-making behavior of a network output cannot be
easily understood in terms of interactions among building
components of the network. This shares the same spirit as
another long-standing puzzle in the theory of the brain: how
the emergent behavior of a neuronal population hierarchy
can be traced back to its elements [5,6]. This challenging
issue is the well-known credit assignment problem, that is,
determining how much credit a given component (either
neuron or connection) should take for a particular behavior
output [5]. To solve this problem, one needs to bridge the
gap between the microscopic interactions of components
and macroscopic behavior.
Excitingly, recent works show that there exist sub-

networks of random weights that are able to produce
better-than-chance accuracies [7–9]. This property seems
to be universal across different architectures, datasets,
and computational tasks [10]. One can even start with
no connections and add complexity as needed by assuming
a single shared weight parameter [11]. Moreover, it was
recently revealed that the innate template of face-selective
neurons can spontaneously emerge from sufficient statis-
tical variations present in the random initial wirings of
neural circuits, while the template may be fine-tuned during
early visual experiences [12]. Therefore, from both an
artificial and a biological neural network perspective,
exploring how and why these random wirings exist will

definitely provide us a powerful lens through which we can
better understand and even further improve the computa-
tional capacities of deep neural networks.
Here, we propose a statistical model of learning credit

assignment from training data of a computational task.
According to the model, we search for an optimal random
network ensemble as an inductive bias about the hypothesis
space [6]. The hypothesis space is composed of all
candidate networks with different assignments of weight
values that accomplish the computation task. Consistent
with previous studies [7–9], the optimal ensemble contains
subnetworks of the original full network, which further
allows for capturing uncertainty in the hypothesis space.
The model can be solved by mean-field methods, thereby
providing a physics interpretation of how credit assignment
occurs in a hierarchical deep neural system.
Model.—To learn credit assignment, we search for an

optimal random neural network ensemble to accomplish a
classification task of handwritten digits [13]. More
precisely, we design a deep neural network of L layers,
including L − 2 hidden layers. The depth of the network L
can be made arbitrarily large. The size (width) of the lth
layer is denoted by Nl. Therefore, N1 is determined by the
total number of pixels in an input image, and NL is the
number of classes (e.g., ten for the handwritten digit
dataset). The weight value of the connection from neuron
i at the upstream layer l to neuron k at the downstream layer
lþ 1 is defined by wl

ik, and the activation of the neuron k at
the (lþ 1)th layer hlþ1

k is a nonlinear function of the
preactivation zlþ1

k ¼ ð1= ffiffiffiffiffi
Nl

p ÞPi w
l
ikh

l
i, where the weight

scaling factor 1=
ffiffiffiffiffi
Nl

p
ensures that the weighted sum is
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independent of the upstream layer width. We use the
rectified linear unit (ReLU) function [14] as the transfer
function from preactivation z to activation h, defined as
h ¼ maxð0; zÞ. The output transfer function specifies a
probability over all classes of the input image by using a
softmax function hk ¼ ðezk=Pi e

ziÞ, where zi is the pre-
activation of the ith neuron at the output layer. For the
categorization task, we define ĥi as the target label (one-hot
representation) and use the cross entropy C ¼ −

P
i ĥi ln hi

as the objective function to be minimized.
Training the neural network corresponds to adjusting all

connection weights to minimize the cross entropy until the
network is able to classify unseen handwritten digits with a
satisfied accuracy (the so-called generalization ability).
Therefore, after the network is trained with a training data
size of T, the network’s generalization ability is verified
with a test data size of V. Remarkably, the state-of-the-art
test accuracy is able to surpass the human performance in
some complex tasks [3]. However, the decision-making
behavior of the output neurons in a deep network is still
challenging to understand in terms of computational
principles of single building components (either neurons
or weights). Recent empirical machine learning works
showed that a subnetwork of random weights can produce
a better-than-chance accuracy [7–9]. This clearly suggests
that there may exist a random ensemble of neural networks
that fulfill the computational task given the width and depth
of the deep network. This ensemble may occupy a tiny
portion of the entire model space. Therefore, a naive
random initialization of the neural network can only yield
a chance-level accuracy. To incorporate all these challeng-
ing issues into a theoretical model, we propose to model the
weight by a spike and slab (SaS) distribution as follows:

Pðwl
ikÞ ¼ πlikδðwl

ikÞ þ ð1 − πlikÞN ðwl
ikjml

ik;Ξl
ikÞ; ð1Þ

where the discrete probability mass at zero defines the
spike, and the slab is characterized by a Gaussian distri-
bution with mean ml

ik and variance Ξl
ik over a continuous

domain (see Fig. 1 for an illustration).
The SaS distribution has been widely used in the

statistics literature [15,16]. Here, the spike and slab,
respectively, have their own physics interpretations in
the learning credit assignment of neural networks. The
spike is intimately related to the concept of network
compression [10,17,18], where not all resources of con-
nections are used in a task. This parameter allows one to
identify very important weights and further evaluate
remaining capacities for learning new tasks [19]. A recent
physics study has already shown that a deep neural network
can be robust against connection removals [20]. The slab
continuous support characterizes the ensemble of neural
networks with random weights producing better-than-
chance accuracies. Among these weights, some are very
important, indicated by a vanishing spike probability mass,

and could thus explain the decision-making of the output
neurons, while the variance of the corresponding Gaussian
distribution captures the uncertainty of the decision-making
solutions [21]. Therefore, the inductive bias of connections
and their associated weights can be learned through the SaS
model of credit assignment. Note that the Gaussian slab is
not used here as an additional regularization complexity
term in the objective function [22]. Instead, the continuous
slab is combined coherently with the spike probability to
model the uncertainty of weights facing noisy sensory
inputs (Fig. 1).
Next, we derive a mean-field method to learn the SaS

parameters θlik ≡ ðπlik; ml
ik;Ξl

ikÞ for all layers. The first
and second moments of the weight wl

ik are given by
μlik ≡ E½wl

ik� ¼ ml
ikð1 − πlikÞ and ϱlik≡E½ðwl

ikÞ2�¼ ð1−πlikÞ
½Ξl

ikþðml
ikÞ2�, respectively. Given a large width of

the layer, the central-limit theorem implies that the pre-
activation follows approximately a Gaussian distribution
N ½zlijGl

i; ðΔl
iÞ2�, where the mean and variance are given

respectively by

Gl
i ¼

1ffiffiffiffiffiffiffiffiffi
Nl−1

p
X

k

μl−1ki hl−1k ; ð2aÞ

ðΔl
iÞ2 ¼

1

Nl−1

X

k

½ϱl−1ki − ðμl−1ki Þ2�ðhl−1k Þ2: ð2bÞ

Then, the feed-forward transformation of the input signal
can be reparameterized by [23,24]

zli ¼ Gl
i þ ϵliΔl

i; ð3aÞ

hli ¼ ReLUðzliÞ; ð3bÞ

for l < L. The last layer uses the softmax function. ϵli is
a layer- and component-dependent standard Gaussian

FIG. 1. Schematic illustration of a model of learning credit
assignment. A deep neural network of four layers, including two
hidden layers, is used to recognize a handwritten digit, say zero,
with the softmax output indicating the probability of the
categorization. Each connection is specified by a spike and slab
distribution, where the spike indicates the probability of the
absence of this connection and the slab is modeled by a Gaussian
distribution of weight values, as pictorially shown only on strong
connections with different means and variances. Other weak
connections indicate nearly unit spike-probabilities, although
they also carry a slab distribution (not shown in illustration
for simplicity).
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random variable with zero mean and unit variance. ϵl is
quenched for every single training mini-epoch and the same
value is used in both forward and backward computations.
This reparameterization retains the statistical structure in
Eq. (2). The objective function relies on ðμ; ϱÞ that can be
preserved by a transformation of θ. Hence, we use a
regularization strength to control the l2 norm of m and
Ξ. In addition, the transformation does not change the
fraction of π ¼ 1 or 0 [25], maintaining the qualitative
behavior of the model.
Learning of the hyperparameter θlik can be achieved by a

gradient descent of the objective function, i.e.,

Δθlki ¼ −ηKlþ1
i

∂zlþ1
i

∂θlki
; ð4Þ

where η denotes the learning rate, and Klþ1
i ≡ ð∂C=∂zlþ1

i Þ.
The entire dataset is divided into minibatches over which
the gradients are evaluated. Note that unlike the standard
back-propagation (BP) [26], we adapt the SaS distribution
rather than a particular weight, in accord with our moti-
vation of learning statistical features of the hypothesis
space for a particular computation task (e.g., image
classification here).
On the top layer, KL

i can be directly estimated as KL
i ¼

−ĥLi ð1 − hLi Þ by definition. For lower layers, Kl
i can be

estimated by using the chain rule, resulting in a BP equation
of the error signal from the top layer:

Kl
i ¼ δlif

0ðzliÞ; ð5aÞ

δli ¼
X

k

Klþ1
k

∂zlþ1
k

∂hli ; ð5bÞ

where δli ≡ ð∂C=∂hliÞ, and f0ð⋅Þ denotes the derivative of
the transfer function.
To proceed, we have to compute ð∂zlþ1

k =∂hliÞ and
ð∂zlþ1

i =∂θlkiÞ. The first derivative characterizes how sensi-
tive the preactivation is under the change of the input
activity of one neuron, and this response is computed as
follows:

∂zlþ1
k

∂hli ¼ μlikffiffiffiffiffi
Nl

p þ ½ϱlik − ðμlikÞ2�hli
NlΔlþ1

k

ϵlþ1
k : ð6Þ

The second derivative characterizes how sensitive the
preactivation is under the change of the hyperparameters
of the SaS distribution. Because the mean and variance,
Glþ1

i and Δlþ1
i , are functions of the hyperparameters, the

second derivative for each hyperparameter can be derived
similarly as follows:

∂zlþ1
i

∂ml
ki

¼ ð1 − πlkiÞhlkffiffiffiffiffi
Nl

p þ μlkiπ
l
ki

NlΔlþ1
i

ðhlkÞ2ϵlþ1
i ; ð7aÞ

∂zlþ1
i

∂πlki ¼ −
ml

kih
l
kffiffiffiffiffi

Nl
p −

ð2πlki − 1Þðml
kiÞ2 þ Ξl

ki

2NlΔlþ1
i

ðhlkÞ2ϵlþ1
i ; ð7bÞ

∂zlþ1
i

∂Ξl
ki

¼ 1 − πlki
2NlΔlþ1

i

ðhlkÞ2ϵlþ1
i : ð7cÞ

Equations (6) and (7) share the same form with the
preactivation zli [Eq. (3)] due to the reparameterization
trick used to handle the uncertainty of weights in the
hypothesis space. Therefore, the learning process of our
model naturally captures the fluctuation of the hypothesis
space, highlighting the significant difference from the
standard BP, which computes only a point estimate of
the connection weights. In particular, if we enforce π ¼ 0
and Ξ ¼ 0, m becomes identical to the weight configura-
tion, and thus our learning equations will immediately
recover the standard BP algorithm [26]. Therefore, our
learning protocol can be thought of as a generalized back-
propagation (gBP) at the weight distribution level or the
candidate-network ensemble level.
Our framework is a cheap way to compute the posterior

distribution of the weights given the data, which can be
alternatively realized by a Bayesian inference where a
variational free energy is commonly optimized through
Monte-Carlo samplings [24,27,28]. The optimization of
the variational free energy for deep neural networks is
computationally challenging, especially for the SaS prior
whose entropy has no analytic form as well. In contrast,
gBP stores two times more parameters than BP, while other
computational steps are exactly the same; the training time
is affordable, as a typical deep network training scales
linearly with the number of parameters [29].
We remark that, during learning, the spike mass π

should be clipped as max½0;minð1; πÞ�, and the variance
Ξ ← maxð0;ΞÞ. Learning the SaS model allows for
credit assignment to each connection, considering a net-
work ensemble realizing the same task. An effective
network can be constructed by sampling the learned SaS
distribution.
The size of the hypothesis space can be approximated by

the model entropy S ¼ −
R
RD PðwÞ lnPðwÞdw, where D is

the number of weight parameters in the network. Because
the joint distribution of weights is assumed to be factorized
across individual connections, S ¼ P

l Sl, where the
entropy contribution of each individual connection (l) is
expressed as [25]

Sl¼−πl ln½πlþð1−πlÞN ð0jml;ΞlÞ�−
ð1−πlÞ

B

X

s

ΓðϵsÞ;

ð8Þ

where B denotes the number of standard Gaussian
random variables ϵs, and ΓðϵsÞ ¼ ln½πlδðml þ

ffiffiffiffiffiffi
Ξl

p
ϵsÞþ

½ð1 − πlÞ=
ffiffiffiffiffiffi
Ξl

p �N ðϵsj0; 1Þ�. If πl ¼ 0, the entropy Sl can
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be analytically computed as 1
2
lnð2πeΞlÞ. If Ξl ¼ 0, the

Gaussian distribution reduces to a Dirac delta function,
and the entropy becomes an entropy of discrete random
variables.
Results.—Despite working at the synaptic weight

distribution level, gBP can reach a similar even better test
accuracy than that of BP [Fig. 2(a)]. As expected, the test
error for gBP decreases with training data size [Fig. 2(b)].
The error bar implies that effective networks sampled from
the learned SaS distribution still yield accurate predictions,
confirming the network ensemble assumption. Our theory
also reveals that the sparsity, obtained from the statistics of
fπlijg, grows first and then decreases [the inset of Fig. 2(b)],
suggesting that the actual working network does not use up
all synaptic connections, consistent with empirical obser-
vations of network compression [10,17,30] and theoretical
studies of toy models [20,31]. Along hierarchical stages of
the deep neural network, the initial stage is responsible for
encoding, and therefore the sparsity must be low to ensure
that there is sufficient space for encoding the important
information. At the middle stage, the encoded information
is recoded through hidden representations, suggesting
that the noisy information is further distilled, which may
explain why the sparsity goes up. Finally, to guarantee the
feature-selective information being extracted, the sparsity
must drop to yield an accurate classification. Therefore, our
model can interpret the deep learning as an encoding-
recoding-decoding process, as also argued in a biological
neural hierarchy [32].
To inspect more carefully what distribution of hyper-

parameters gBP learned, we plot Fig. 3(a) showing the
evolution of the distribution across the hierarchical stages.

First, the spike mass π has a U-shaped distribution. One
extreme is at π ¼ 0, suggesting that the corresponding
connection carries feature-selective information and thus
cannot be pruned, while the other extreme is at π ¼ 1,
suggesting that the corresponding connection can be
completely pruned. Apart from these two extremes, there
exists a relatively small number of connections that can be
present or absent with certain probabilities. These con-
nections may reflect nuisance factors in sensory inputs
[33]. The mean of the slab distribution has a relatively
broad distribution, but the peak is located around zero; an
L-shaped distribution of the variance hyperparameter is
observed. Note that if Ξ ¼ 0, the SaS distribution reduces
to a Bernoulli distribution with two delta peaks. Due to
Eq. (7b), the point solution (π ¼ 0, Ξ ¼ 0) is not a stable
attractor for gBP [25]. Moreover, as the training data size
increases, the variance per connection displays a non-
monotonic behavior with a residual value depending on
the hierarchical stage [25].
We can use the entropy Sl for each connection to

characterize the variability of the weight value. Note that
the entropy can be negative for continuous random vari-
ables. The peak at zero [Fig. 3(b)] indicates that a large
number of connections are deterministic, including two
cases: (i) π ¼ 1 [unimportant (UIP) weight]; (ii) π ¼ 0 and
Ξ ¼ 0 [very important (VIP) weight]. Figure 3(c) shows
that the entropy per connection grows first and then
decreases. This nonmonotonic behavior is the same as that
of the sparsity in Fig. 2(b). The large entropy at the middle

(a) (b)

FIG. 2. Properties of gBP in testing performances on unseen
data. (a) Training trajectories of a network architecture of three or
four layers. The architecture is defined as 784-100-100-10 (four
layers) or 784-100-10 (three layers), where each number indicates
the corresponding layer width. Networks are trained on the data
size of T ¼ 104 images and tested on another unseen-data size of
V ¼ 104 images. The fluctuation is computed from five inde-
pendent runs. (b) Test errors of gBP versus training data size. The
error bar characterizes the fluctuation across ten independently
sampled network architectures from the SaS distribution. The
same network of four layers as in (a) is used. The inset shows the
sparsity per connection as a function of layers, for which
networks of five layers are used and the hidden layer width is
still 100 nodes. Each marker is an average over ten independent
runs. The “k” in the inset means the training data size in the unit
of 103.

(a)

(b)
(c)

FIG. 3. Statistical properties of trained four-layer networks with
gBP. Unless stated otherwise, other training conditions are the
same as in Fig. 2(a). Distribution of hyperparameters ðπ;m;ΞÞ
for a typical trained network. (b) Distribution of connection
entropy Sl for a typical trained network. (c) Entropy per
connection versus layers (B ¼ 100). Different training data sizes
are considered, and the result is averaged over ten independent
runs of five-layer networks.
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stage suggests that during the recoding process, the
network has more degrees of freedom to manipulate
the hypothesis space of the computational task [34].
Furthermore, more training data reduce the uncertainty
(yet not to zero) until saturation [Fig. 3(c)].
Finally, our mean-field framework can be used to explore

effects of targeted-weight perturbation [Fig. 4(a)], which
previous studies of random deep models could not address
[20,31]. VIP weights play a significant role in determining
the generalization capability, while turning on UIP weights
does not impair the performance. A random dilution of all
weights behaves mildly in between. When going deeper,
the perturbation effect becomes less evident (not shown)
due to the lower number of VIP weights [Fig. 4(b)].
Conclusion.—In this Letter, we propose a statistical

model of learning credit assignment in deep neural net-
works, resulting in an optimal random subnetwork ensem-
ble explaining the behavior output of the hierarchical
system. The model can be solved by using field methods,
yielding a practical way to visualize consumed resources of
connections and an ensemble of random weights—two key
factors affecting the emergent decision-making behavior of
the network. Our framework can be applied to a more
challenging CIFAR-10 dataset [35] and obtains qualita-
tively similar results [25]. Our model thus provides
deep insights toward understanding many recent interesting
empirical observations of random templates in both arti-
ficial and biological neural networks [7–9,12,36]. The
model also provides a principled method for network
compression, saving memory and computation demands
[17], and could also have implications for the continual
learning of sequential tasks, where those important con-
nections for old tasks are always protected to learn new
tasks [30,37].
As artificial neural networks become increasingly

important to model the brain [5,12], our current study of
artificial neural networks may provide cues for addressing
how the brain solves the credit assignment problem.

Other promising directions include considering correlations
among weights and generalization of this framework to the
temporal credit assignment, where spatiotemporal infor-
mation is considered in training recurrent neural networks
[38–40].
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