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We reveal a dramatic departure of electron thermodiffusion in solids relative to the commonly accepted
picture of the ideal free-electron gas model. In particular, we show that the interaction with the lattice and
impurities, combined with a strong material dependence of the electron dispersion relation, leads to
counterintuitive diffusion behavior, which we identify by comparing a two-dimensional electron gas
(2DEG) and single-layer graphene. When subject to a temperature gradient ∇T, thermodiffusion of
massless Dirac fermions in graphene exhibits an anomalous behavior with electrons moving along ∇T and
accumulating in hot regions, in contrast to normal electron diffusion in a 2DEG with parabolic dispersion,
where net motion against∇T is observed, accompanied by electron depletion in hot regions. These findings
bear fundamental importance for the understanding of the spatial electron dynamics in emerging materials,
establishing close relations with other branches of physics dealing with electron systems under nonuniform
temperature conditions.
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Introduction.—Thermodiffusion, also known as thermo-
phoresis or Ludwig-Soret effect, and widely studied in
molecular [1–3] and nanoparticle [4–6] systems, essentially
denotes the fact that a temperature gradient ∇T can induce
a nonuniform density distribution in an ensemble of
particles. For a mixture of several types of particles, lighter
and heavier species tend to move along and against ∇T,
leading to negative and positive thermodiffusion that
produces accumulation in hot and cold regions, respec-
tively [7–10]. For a one-component ensemble, as can be
intuitively understood from the equipartition theorem
mhv2i=2 ¼ ξkBT in ξ dimensions, where m and v are
the constituent mass and velocity, respectively, particles at
higher temperatures move faster and thus should always
diffuse against ∇T towards cold regions, causing depletion
of the particle density in hot regions [3,6]. For conduction
electrons in solids, a similar description is also routinely
adopted to explain the Seebeck effect, in which a nonzero
∇T can give rise to a measurable voltage across a material.
Although this intuitive prescription correctly predicts the
sign of the thermoelectric voltage, it does not correctly
describe the relation between the Seebeck effect and
electron thermodiffusion. As we clarify in this work,
electron thermodiffusion is not only driven by the electro-
motive field in the Seebeck effect, but also by an effective
electric field associated with the temperature dependence of
the chemical potential. More interestingly, aimed by this
total thermoelectric field, electron diffusion could anoma-
lously be directed along ∇T, similar to the negative
thermodiffusion of lighter particles in a mixture.

The diffusivity can be quantitatively characterized by a
diffusion coefficient D ¼ hv2ihτi, as known from Fick’s
laws. For free particles, the relaxation time τ results only
from interparticle collisions. In contrast, electrons in solids
are subject to various relaxation mechanisms, such as
scattering by impurities or phonons [11]. More importantly,
the group velocity of Bloch electrons can have significant
departures from free electrons when the dispersion is far
from parabolic. A notable example is provided by massless
Dirac fermions (MDFs) in graphene [12,13], which feature
a constant group velocity independent of the electron
energy. Such a unique conical dispersion could endow
graphene with unconventional thermoelectric properties,
and indeed anomalous Seebeck coefficients in this material
have already been observed [14–16]. Anticipating a
dependence of diffusivity on electron velocity, we can also
expect unconventional diffusion behavior of MDFs to
emerge in graphene.
In this Letter, we focus on single-layer two-dimensional

electron gas (2DEG) and graphene systems for a compar-
ative study of the thermodiffusion behavior associated with
either free electrons or MDFs. We find that the free-electron
thermodiffusion in 2DEGs behaves indeed in accordance
with conventional intuition, whereby electrons at higher
temperatures tend to spread to low temperature regions,
regardless of the scattering mechanisms. In contrast, MDFs
in graphene exhibit an unexpected anomalous thermodif-
fusion effect. Although a higher temperature in graphene
also signifies more energetic electrons, the diffusivity of
these electrons is weaker, so they diffuse to and accumulate
in the hot regions.
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Qualitative explanation of anomalous thermodiffusion.—
We consider thermodiffusion of electrons in a 2DEG or
single-layer graphene subject to a temperature gradient∇T.
As illustrated in Fig. 1(a), a strong ∇T can be easily
achieved by using a tightly focused visible continuous-
wave laser. The 2DEG can be experimentally realized by a
thin doped semiconductor, so in both 2DEG and graphene
materials the incident laser can cause strong interband
transitions and heat the electrons up to ∼103 K [17–21].
With ∇T established, electron thermodiffusion occurs
because the diffusivity characterized by the coefficient
D ¼ hv2ihτi varies with spatial location. For a 2DEG with
parabolic dispersion Ek ¼ ℏ2k2=2me [black curve in
Fig. 1(b), assuming a bare electron mass me throughout
the Letter], the group velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ek=me

p
is proportional to

the wave vector k, so hot regions containing more energetic
electrons should display stronger diffusivity (i.e.,
Dhot > Dcold) if we assume a constant relaxation time τ.
In fact, even when taking into account the energy depend-
ence of the relaxation time τðEÞ, higher temperature still
yields larger D in the 2DEG (see below). In consequence,
the thermodiffusion direction of free electrons is consistent
with particles in the ideal gas model.
In stark contrast to the 2DEG, MDFs in graphene exhibit

anomalous thermodiffusion with net motion along the
temperature gradient as a result of the constancy of the
group velocity vF ≈ 108 cm=s [Fig. 1(c)]. Assuming a
constant τ, the diffusivity coefficient D is independent of
temperature, therefore producing no thermodiffusion of

MDFs. In practice, we need to consider an energy depend-
ence of τðEÞ resulting from various scattering mechanisms,
so in general, electrons with higher energy possess shorter
relaxation time, as shown below based on impurity and
phonon scattering calculations. MDFs therefore display
weaker diffusivity in hot regions (i.e., Dhot < Dcold),
leading to anomalous diffusion, with electrons accumulated
in the hot areas.
Diffusion coefficients and energy-dependent relaxation.—

Although it is not a rigourous procedure, we first estimate
the temperature dependence of the electrons using the
conventional definition of the diffusion coefficient D ¼
hv2ihτi. A more rigorous model is presented in next
section. The mean square velocity of 2DEG electrons is
determined by the their thermal energymehv2i=2 ¼ hETi −
hET¼0i at temperature T [22], and for MDFs in graphene
one trivially gets hv2i ¼ v2F.
Both the definition of D and the more rigourous model

used below require information on the energy dependence
of the relaxation time τðEÞ. In D, the latter enters
through the average hτi ¼ R

dENðEÞτðEÞ½−∂EfðEÞ�=R
dENðEÞ½−∂EfðEÞ�, where the density of states isNðEÞ ¼

me=πℏ2 for the 2DEG and NðEÞ ¼ 2jEj=πv2Fℏ2 for gra-
phene, and fðEÞ is the Fermi-Dirac distribution, involving a
temperature-dependent chemical potential μðTÞ [22].
Throughout this Letter, the electron energy integral runs
over f0;þ∞g for the 2DEG and f−∞;þ∞g for graphene.
The relaxation time in the latter is taken to satisfy
τð−EÞ ¼ τðEÞ.
In this Letter, we consider energy-dependent relaxation

mechanisms associated with three major processes, corre-
sponding to scattering by impurities, acoustic phonons, and
optical phonons. Assuming ionic impurities located on the
plane of the 2D material and each of them having a charge
e, the resulting impurity-scattering rate is given by [23,24]

1

τimðEk; TÞ
¼ 2πni

ℏ

X
lk0

���� vqϵ
����
2

F½1 − cosðθk0 − θkÞ�δk;k0 ;

where ni is the density of impurities, l runs over the two π
bands in graphene with energies Ek ¼ �vFℏjkj, l ¼ 1 for
the 2DEG, vq ¼ 2πe2=q is the 2D Fourier component of
the Coulomb potential with wave vector q ¼ k0 − k, F ¼ 1
for the 2DEG, and F ¼ ½1þ cosðθk0 − θkÞ�=2 for gra-
phene. The temperature dependence is incorporated in
the screening function ϵðq; TÞ ¼ 1þ vqχðq; TÞ, where
χðq; TÞ is the susceptibility [22,25–27]. Scattering by this
type of impurity is dominant in graphene at low and room
temperatures [24].
The scattering rate of electrons by acoustic phonons can

be written as [22,28,31]

1

τacðE; TlÞ
¼ α

πD2
ac

4ℏρv2ac
kBTlNðEÞ;
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FIG. 1. (a) Illustration of a two dimensional system illuminated
by a focused continuous-wave laser beam to locally heat electrons
(red region). (b),(c) Energy dispersion and group velocity of
(b) free electrons in a 2DEG and (c) MDFs in graphene. The
electron diffusion direction is determined by the temperature
dependence of the diffusivity coefficient D ¼ hv2ihτi, which
displays the qualitative behavior summarized in (a) (right text), as
derived from the electron group velocity in (b) and (c). Normal
and anomalous electron diffusion are predicted in the 2DEG and
graphene, respectively.
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and for optical phonons the rate is given by [22,31–33]

1

τopðE; TlÞ
¼ α

πD2
op

8ρω0

X
�

�
nTl

ðω0Þ þ
1

2
� 1

2

�
NðE ∓ ℏω0Þ;

where α ¼ 4 for the 2DEG and α ¼ 1 for graphene, Dac and
Dop are the deformation potentials of acoustic and optical
phonons, ρ is the surface mass density, ℏω0 is the optical

phonon energy, and nTl
ðω0Þ is the Bose-Einstein distribution

evaluated at the lattice temperature Tl. Due to the weak
electron-phonon interaction in clean graphene and the 2DEG,
Tl can remain close to the ambient level even when the
electrons are heated [18], so throughout this Letter we assume
Tl ¼ 300 K. We also use the effective acoustic velocity vac,
defined by 2=v2ac ¼ 1=v2ac;L þ 1=v2ac;T and accounting for
both longitudinal and transverse phonons [31].
With the energy and temperature dependent τ obtained

from the above equations, we can readily find the diffusion
coefficient D for electrons at different temperatures, as
shown in Fig. 2. For both 2DEG and graphene we use the
same parameters Dac ¼ 9.94 eV, Dop ¼ 5 × 109 eV=cm,
ℏω0 ¼ 200 meV, ρ ¼ 7.6 × 10−8 g=cm2, and vac ¼
1.62 × 106 cm=s, which are in fact chosen to be consistent
with the properties of graphene [28,31,33]. Actually, the
results presented below on the thermoelectric field do not
strongly depend on these parameters. In Fig. 2, for all three
scattering mechanisms considered, D increases monoton-
ically with temperature in the 2DEG, while it decreases for
MDFs in graphene at high temperatures, thus confirming
normal and anomalous diffusion regimes in the 2DEG and
graphene, respectively.
Model based on the Boltzmann equation.—A standard

and more rigorous description of electron diffusion is based
on Boltzmann’s transport equation, which is valid for small
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FIG. 2. Electron diffusion coefficient D in (a) a 2DEG and
(b) graphene as a function of temperature. Each curve only
considers one scattering mechanism caused by impurities (black),
acoustic phonons (blue), or optical phonons (red). The temper-
ature dependence of D supports the conclusion anticipated in
Fig. 1(a). The Fermi level and impurity density are assumed to be
EF ¼ 0.2 eV and ni ¼ 2 × 1011 cm−2 in both materials (see main
text for other parameters).
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FIG. 3. Thermoelectric field acting on uniform (a)–(d) 2DEG and (e)–(h) graphene films subject to a temperature Gaussian
distribution TðxÞ ¼ 1700½K�e−x2=w2 þ 300½K�with w ¼ 1 μm [see insets in (c),(g)]. We consider different models for scattering: (a),(e) a
constant scattering rate, (b),(f) impurity scattering, (c),(g) acoustic-phonon scattering, and (d),(h) optical-phonon scattering. Electron

diffusion is determined by the total thermoelectric field E⃗tot (black curves), which is the sum of the electromotive field associated with

the Seebeck effect E⃗emf (red curves) and an effective field E⃗μ (blue curves), arising from the temperature dependence of the chemical

potential. The force −eE⃗tot drives electron diffusion opposite and along the temperature gradient in the 2DEG and graphene,

respectively, for all scattering mechanisms considered (see signs of E⃗tot), except when assuming an unrealistic constant relaxation time in

graphene [see (e)], which leads to E⃗tot ¼ 0. All parameters are the same as in Fig. 2.
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temperature gradients as those considered here. In this
model, the total electric field acting on the electrons can be
written as [22]

E⃗tot ¼ E⃗Coul þ
1

e
∇μ − S∇T; ð1Þ

where E⃗Coul is the Coulomb electric field produced by the
nonuniform electron charge distributions, the second term

E⃗μ ¼ ∇μ=e ¼ ð∂TμÞ∇T=e is due to the temperature

dependence of the chemical potential, and E⃗emf ¼ −S∇T
is the electromotive field in the Seebeck effect. In fact, for

uncharged particles, we have E⃗Coul ¼ 0 and the particle
current is then ∝ −∇T, with the prefactor approximately
given by the diffusion coefficient D discussed above. It
should be noted that for most studies on thermoelectricity,

the field component E⃗μ is combined with E⃗Coul to define an
electrochemical potential that corresponds to the voltage
measurable through an external electric circuit (e.g., a
thermocouple). However, for closed systems such as in
Fig. 1(a), the direction of electron diffusion depends on the

details of both E⃗μ and E⃗emf . In particular, the Seebeck
coefficient is given by S ¼ −J 1=J 0eT in terms
of J m ¼ ðπℏ2Þ−1 R jEjdEτðEÞðE − μÞm½−∂EfðEÞ�.
Thermoelectric field acting on the material electrons.—

In Fig. 3, we show calculations of the thermoelectric field
acting on electrons in a 2DEG [Figs. 3(a)–3(d)] and
graphene [Figs. 3(e)–3(h)] assuming a uniform density
(i.e., E⃗Coul ¼ 0). We also assume that heating by a focused
laser beam leads to a Gaussian temperature distribution in
these 2D systems [see insets in Figs. 3(c) and 3(g)]. To
disentangle the contributions of different relaxation mech-
anisms, we only consider the energy-dependent relaxation
time τðϵÞ through a single scattering channel in each plot of
Fig. 3. In addition to scattering associated with impurities
[Figs. 3(b) and 3(f)] and phonons [Figs. 3(c), 3(d), 3(g), and
3(h)], as investigated in Fig. 2, we also include here results
obtained for a constant relaxation time τconst [Figs. 3(a) and

3(e)]. Noticing that E⃗μ is a material property, and also that
both a constant prefactor in τðEÞ and the chosen τconst
cancel out in the above definition of the Seebeck coefficient
S, we conclude that the thermoelectric field is independent
of the actual magnitude of τ.
Because of the vanishing of E⃗Coul in homogeneous

electron distributions, the total field reduces to

E⃗tot ¼ E⃗emf þ E⃗μ, so the direction of electron diffusion is

determined by the relative magnitude of E⃗emf and E⃗μ. In our

calculations, we find the electromotive field E⃗emf (red
curves, Fig. 3) to be generally directed along the tempera-

ture gradient ∇T (and so the electromotive force −eE⃗emf is
directed opposite to it), which is consistent with the typical
negative Seebeck coefficient in electron-doped systems.

In contrast, −eE⃗μ is always along ∇T because an increase
in electron temperature lowers the chemical potential μ [see
Eq. (1) and Ref. [22] ].
For a 2DEG, all scattering mechanisms similarly result in

a thermoelectric field E⃗tot [black curves, Figs. 3(a)–3(d)]
directed along ∇T (i.e., a force −eE⃗tot against ∇T), which
confirms that free electrons undergo conventional diffu-
sion. In contrast, for a graphene layer with characteristic
scattering processes dominated by impurities and phonons

[Figs. 3(f)–3(h)], E⃗μ exceeds E⃗emf , thus resulting in a total

force −eE⃗tot directed along ∇T, and therefore producing
anomalous diffusion of MDFs. Interestingly, although a
constant relaxation time [Fig. 3(b)] can give rise to a

nonzero Seebeck effect, E⃗emf is perfectly cancelled by E⃗μ,
which confirms our intuitive explanation presented
in Fig. 1.
Charge rearrangement in a temperature gradient.—The

thermoelectric fields E⃗emf and E⃗μ presented for uniform
electrons in Fig. 3 cause further electron diffusion until a
steady electron density distribution is established, when

E⃗emf þ E⃗μ is balanced by the additional field E⃗Coul produced
by the nonuniform charge distribution. The resulting
electron rearrangements in the 2DEG and graphene
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FIG. 4. (a) Illustration of a Gaussian temperature distribution in
a 2D system: TðxÞ ¼ 1700½K�e−x2=w2 þ 300½K� with w ¼ 1 μm,
produced by focused laser heating (inset). (b),(c) Steady-state
electron density in (b) a 2DEG and (c) graphene under the
temperature distribution in (a). Here, n0 is the unperturbed
electron density, determined by the Fermi level EF ¼ 0.2 eV.
(d) Amplitude (color scale) and orientation (arrows) distributions

of the static electric fields E⃗Coul generated by the thermally
excited nonuniform electron charges [color in (b),(c)]. The 2DEG
and graphene are located at z ¼ 0. The three scattering mech-
anisms by impurities and phonons shown in Fig. 3 are all
included (i.e., τ−1 ¼ τ−1im þ τ−1ac þ τ−1op ) using the same calculation
parameters.
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systems are shown in Fig. 4. The thermoelectric fields E⃗emf

and the contribution E⃗μ induced by the temperature gradient
can be directly calculated following a similar approach as
used to obtain Fig. 3, safely assuming a uniform EF
because the density rearrangement is relatively small.
The electric field induced by the nonuniform charge

satisfies the Poisson equation ∇ · E⃗Coul ¼ −4πenðrÞ,
which, together with the equilibrium condition E⃗Coul ¼
−E⃗emf − E⃗μ, allows us to easily find the steady charge
distributions in the 2DEG [Fig. 4(b)] and graphene
[Fig. 4(c)]. The highest temperature gradient around the
waist of the Gaussian distribution results in strong outward
and inward electron drifts in the normal and anomalous
diffusion regimes found in the 2DEG and graphene,
respectively. Such electron drifts further decrease or
increase the electron density in the temperature Gaussian
peak (around x ¼ 0) by accumulating or depleting elec-
trons outside the waist. Additionally, nonuniform charge
distributions [colors in Figs. 4(b) and 4(c)] associated with
the electron density rearrangements can induce a static

electric field E⃗Coul [Fig. 4(d)] to balance the thermoelectric

field. For both the 2DEG and graphene, E⃗Coul is localized
around the span of the temperature Gaussian distribution,
with its field lines flowing from positive to negative charges
accumulated by electron thermodiffusion [see Figs. 4(b)
and 4(c)].
Concluding remarks.—We expect anomalous thermodif-

fusion to be observed in the evolution of MDFs supported by
various 2D or higher-dimensional materials, such as surface
states of topological insulators [34–38] or Dirac semi-metals
[39,40]. The concepts of conventional and anomalous
thermodiffusion can be straightforwardly generalized to
holes in n-doped semiconductors and graphene. In addition,
the Seebeck coefficients of electrons in some metals (e.g.,
nickel and potassium) are intrinsically positive. We expect
that anomalous electron thermodiffusion will also be found
in such materials. Considering a one-dimensional tight-
binding electron band Ek ¼ E0 − 2t × cosðkaÞ, the group
velocity decreases with electron energy in the Ek > E0

regime, so anomalous thermodiffusion can also be antici-
pated in this simple model for a Fermi level EF > E0

according to the condition illustrated in Fig. 1.
Our findings are important for a fundamental under-

standings of the evolution of electrons in a material subject
to a temperature gradient, which can be relevant to
applications in thermopower generation. The processes
of electron thermodiffusion here revealed can be related
to branches of physics dealing with electron systems in
nonuniform temperature environments. For example, when
further considering the dynamical establishment of a
nonuniform charge density as shown in Figs. 4(b) and
4(c), a focused laser pulse can directly excite charge
oscillations in extended graphene [22], thus offering a

sought-after way to generate graphene plasmons in
extended homogeneous layers without resorting to scatter-
ing structures [41–43], such as the tips commonly used in
scanning near-field optical microscopy [29,44,45]. The
interaction between the electric field induced by thermally
excited charges and neighboring molecules could lead to a
new way of performing nonlinear optical sensing [46–48].
The electric potential built up by a nonuniform electron
charge distribution as shown in Fig. 4(d) could interact with
an electron beam and thus provide a potential alternative to
realize a phase plate for ultrafast electron beam shaping
[49–51].
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