
 

Obstruction and Interference in Low-Energy Models for Twisted Bilayer Graphene
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The electronic bands of twisted bilayer graphene (TBLG) with a large-period moiré superlattice fracture
to form narrow Bloch minibands that are spectrally isolated by forbidden energy gaps from remote
dispersive bands. When these gaps are sufficiently large, one can study a band-projected Hamiltonian that
correctly represents the dynamics within the minibands. This inevitably introduces nontrivial geometrical
constraints that arise from the assumed form of the projection. Here we show that this choice has a profound
consequence in a low-energy experimentally observable signature that therefore can be used to tightly
constrain the analytic form of the appropriate low-energy theory. We find that this can be accomplished by a
careful analysis of the electron density produced by backscattering of Bloch waves from an impurity
potential localized on the moiré superlattice scale. We provide numerical estimates of the effect that can
guide experimental work to clearly discriminate between competing models for the low-energy band
structure.
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Twisted van der Waals heterostructures with large-period
moiré superlattices are versatile platforms for exploring
narrow band physics, and the role of interactions in ground
state selection and its excitations. Famously, in magic-angle
graphene with a rotation angle ∼1°, the narrow bands near
charge neutrality are tuned to a nearly flat condition, and
various fractional band fillings are found to support
interaction-driven insulating, superconducting, and mag-
netic states of matter [1–5]. To study the role of these
interactions, it is a practical necessity to develop effective
low-energy models that faithfully represent the spectral and
topological properties. This is, however, a nontrivial task
because the topology of the resulting effective model
depends crucially on the choice of symmetries one retains
in the low-energy projection. Indeed, in the current liter-
ature for twisted bilayer graphene (TBLG), there are
broadly three classes of such models that are either
representable by a minimal local Wannier basis [6,7],
fundamentally non-Wannier representable due to a topo-
logical obstruction [8,9], or representable by a Wannier
basis only with the addition of auxiliary bands [8,10,11]. In
this Letter, we propose an experimentally observable
signature, which can be used to distinguish between these
incompatible models. Motivated by a recent experimental
demonstration that the interference pattern of the back-
scattering of Bloch waves from an impurity can carry
information about the Berry phase [12], we propose to
distinguish between these different models by carefully
analyzing the dark-field reconstruction of the induced
change in the local density of states (LDOS) by the
presence of a localized impurity on the moiré scale. We
emphasize that since the relevant physics concerns the
topology and not the flatness of the low-energy bands, our

proposal does not require tuning the system to a specific
magic angle. In fact, at larger angles like θ ∼ 1.5°–2°, where
complications such as strong interaction-induced renorm-
alization of the band structure, vanishing of the Dirac
velocity at the zone corners, and generation of secondary
nodal points are absent, our proposal provides a clean test
of the relative chirality of the Dirac cones at charge
neutrality. Furthermore, because our proposal relies on
analyzing signals generated by a moiré-scale impurity, it
should not suffer from inevitable noise due to atomic
impurities and twist-angle inhomogeneities since these
presumably produce much weaker perturbations to the
LDOS. For these reasons and others outlined below, the
current proposal should be readily achievable in experi-
ments. We note in passing that the method based on wave
front interference and dislocation described below is
sufficiently generic that it can be adapted to study other
Fermi-surface properties of different van der Waals hetero-
structures [13].
In small-angle TBLG, the low-energy band structure is

dominated by strong hybridization of the monolayer Dirac
cones induced by interlayer coherence [7,14–18]. The
interlayer hopping is conventionally modeled as a smooth
local matrix-valued potential acting on the layer and
sublattice degrees of freedom that interpolates between
the AA and AB=BA registries [14,16–18]. In such a
continuum theory, microscopic symmetries of the lattice
are neglected in favor of emergent symmetries that are
approximately preserved at long wavelengths [8–10,19].
Additionally, because the two microscopic valleys are
usually well separated in momentum space as shown in
Fig. 1(b), a continuum theory typically assumes they are
not mixed, introducing a Uνð1Þ valley symmetry when the
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Hamiltonian is decoupled into two independent valley
sectors that are related by time-reversal T symmetry. In
a single valley, the projected Hamiltonian breaks T sym-
metry, but retains composite C2zT symmetry and D3 point
symmetries. While none of these symmetries are generally
exact, one expects them to be good approximations as long
as the relevant physics is insensitive to microscopic details.
Valley projection symmetry is of particular importance in
our analysis, and will be assumed throughout [6].
Diagonalizing the (spinless) continuum Hamiltonian

leads to two weakly dispersive energy bands per valley
near charge neutrality that are spectrally isolated from the
rest of the band structure. Much work has been devoted to
characterizing their topology in hope of identifying a
compact effective low-energy description that includes
only two orbitals per valley [7–11,20]. This turns out to
be a delicate task. If one were to enforce the emergent
symmetries of the continuum model, then two Dirac cones
form within a single valley with the same chirality. By
having opposite mirror eigenvalues for the two bands at an
M̄ point, the Hamiltonian written in a two-component
chiral representation near K̄ and K̄0 is forced by My

symmetry to have the same phase winding [8,9], as
illustrated in Fig. 1(c). This observation prevents the
construction of a local two-orbital tight-binding model
defined on a honeycomb lattice which would require two
Dirac cones in a single valley with opposite chirality.
Alternatively, one might neglect the emergent sym-

metries altogether and argue that a generic sample of
TBLG usually has no exact My symmetry because the
twist center that determines the microscopic point sym-
metries is never under control experimentally. Then, one
can posit exponentially localized Wannier orbitals centered
at the AB and BA regions. In this case, the resulting
tight-binding model constructed from these Wannier orbi-
tals will indeed carry opposite chirality, as illustrated in
Fig. 1(d). This approach is appealing because it yields a
simple two-orbital model that serves as the starting point
for many studies investigating electron interactions in
TBLG [21–26]. However, it comes at the cost of relieving
the C2T symmetry protection of the linear band crossings.
Recently, it has been proposed and experimentally

demonstrated that Friedel oscillations of LDOS due to
backscattering from a localized impurity not only carry
spectral information but also encode Berry-phase informa-
tion [12,27], which renders them a crucial diagnostic tool
for examining momentum-space topology. As this is the
distinguishing feature between the different low energy
models outlined above, here we adapt this insight to study
Friedel oscillations in TBLG to probe the subtler issue of
the assignment of chiral structure to its narrow bands.
First, we consider a valley-polarized two-orbital model

that describes the low-energy spectrum of TBLG. This
model is formally equivalent to the model of monolayer
graphene, and as such, it can be represented using two

exponentially localized Wannier orbitals per valley cen-
tered at the AB and BA regions. In the Bloch basis, the
Hamiltonian expanded to linear order in momentum around
the zone corners is

HðK̄þ qÞ ¼ −ℏṽFq · σ�;

HðK̄0 þ qÞ ¼ −ℏṽFq · σ; ð1Þ
where σ ¼ ðσx; σyÞ are Pauli matrices, ṽF is the renormal-
ized velocity that depends on interlayer hopping

Γ
K
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M
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FIG. 1. (a) Honeycomb moiré lattice structure of TBLG,
spanned by LM

1 and LM
2 , is formed by starting with an AA-

stacked bilayer system and then twisting one layer relative to the
other by an angle θ. The resulting structure is a long-wavelength
moiré pattern that has AA regions (yellow-shaded), AB regions
(red-shaded), and BA regions (blue-shaded). (b) Mini-Brillouin
zone (MBZ) of TBLG formed by the momentum-mismatch of the
original Brillouin zones. The blue and red hexagons show the
monolayer BZs rotating in opposite directions. The MBZ is
shown in green with high-symmetry points K̄, K̄0, M̄, and Γ̄, and
reciprocal lattice vectors GM

1 and GM
2 . (c)–(d) Band structure of

TBLG numerically calculated from the continuum model with
θ ¼ 2°, wAA ¼ 79.7 meV, wAB ¼ 97.5 meV, and ℏvF=a ¼
2135.4 meV. We also apply an interlayer bias V ¼ 200 meV
to shift the Dirac cones to improve visibility. The dash and solid
lines are energy bands for the − and þ valleys, respectively. We
observe two Dirac cones in each valley at K̄ and K̄0. We indicate
the chirality of the band crossings schematically by blue and red
cones. Dirac cones in the same valley have the same chirality in
(c), corresponding to the topology of the continuum model, and
opposite chirality in (d), corresponding to the topology of a two-
orbital tight-binding model.
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amplitudes, wAA and wAB, and q is measured from the
respective zone corners. Written in the chiral representa-
tion, HðkÞ ¼ dðkÞ · σ for some vector-valued function
dðkÞ, the chirality of some twofold degenerate point kc
is defined as the integer winding number of dðkÞ as k goes
around counterclockwise any simple closed loop that
contains kc. In Eq. (1), dðqÞ ¼ ðqx;−qyÞ near K̄ and
dðqÞ ¼ ðqx; qyÞ near K̄0, which shows that the Dirac cones
carry opposite chirality in this model. For Bloch wave
functions with wave vectors near a Dirac cone, the chirality
defines the relative phase between the two sublattices. This
phase difference will be crucial in the consideration of
scattering processes induced by the presence of an impu-
rity, especially in the detection of the relative chirality
between two Dirac cones.
We now place a spatially localized impurity atop one of

the Wannier orbitals, as shown schematically in Fig. 2(a).
Suppose this impurity contains a resonant bound state with
energy U0 that has significant wave function overlap
with only the Wannier orbital on which it sits, say the
AB orbital, then the scattering potential in the basis of
Eq. (1) simplifies to

Uðr; r0Þ ≈U0

�
1 0

0 0

�
δð2ÞðrÞδð2Þðr0Þ: ð2Þ

Using this approximation, we can calculate the induced
change in LDOS using the Green’s function formalism.
This framework is especially convenient when the impurity
can be modeled as an delta impurity in the Wannier basis as
in Eq. (2). We should emphasize that Eq. (2) holds for an
impurity localized on the moiré scale, not the atomic scale.
The change in LDOS at energy E is given by

ΔρðE; rÞ ¼ −π−1ℑTr½Gð0ÞðE; rÞT ðEÞGð0ÞðE;−rÞ�, where
Gð0ÞðE; rÞ is the bare Green’s function, and r is measured
from the location of the impurity. The trace is taken over the
Wannier sublattice degree of freedom.WhenE is sufficiently
close to the energy of the Dirac cones, we use Eq. (1) to
calculate the bare Green’s function exactly [28]. We find that
the momentum-space phase in the Hamiltonian that defines
the chirality is mapped to a real-space phase in the bare
Green’s function upon integration over all momenta near the
Dirac cones [12]. For scattering processes that exchange
momentum within the same Dirac cone, this real-space
phase cancels out, but for scattering processes that exchange
momentum between different Dirac cones within a single
valley, this real-space phase instead has a nontrivial signature
for the interference pattern of LDOS. Explicitly, we decom-
pose ΔρðE; rÞ into two parts

ΔρðE; rÞ ¼ ΔρintraðE; rÞ þ ΔρinterðE; rÞ;
ΔρintraðE; rÞ ∝ ℑftðEÞ½K2

0ðr=ilÞ − K2
1ðr=ilÞ�g;

ΔρinterðE; rÞ ∝ ℑ½tðEÞK2
1ðr=ilÞ� cos ðΔK̄ · r − 2ϕrÞ

− ℑ½tðEÞK2
0ðr=ilÞ� cos ðΔK̄ · rÞ; ð3Þ

where ΔK̄ ¼ K̄ − K̄0, l ¼ ℏṽF=E, tðEÞ is the nonzero
matrix element of T ðEÞ, ϕr is the real-space angle, and
KαðzÞ is the αth modified Bessel function of the second
kind. From Eq. (3), we observe that ΔρintraðE; rÞ is only a

FIG. 2. (a) Schematic representation of a possible experimental
setup in which an impurity is placed atop an AB region. (b),(c)
The spatial distribution of the two Wannier orbitals in a single
valley of TBLG. jW1i and jW2i are centered at an AB and BA
region, respectively; however, most of their density is concen-
trated at the adjacent AA regions. (d),(e) The LDOS simulated
from inter-Dirac-cone scatterings at a bias energy E ¼ 10 meV
and E ¼ 20 meV for the Wannier-representable model where the
chirality at the two Dirac cones is opposite. We observe two wave
front dislocations in the interference pattern. In addition, we also
observe that as the probing energy increases, the period of radial
oscillations decreases. (f),(g) The LDOS simulated from inter-
Dirac-cone scatterings for the Wannier-obstructed model where
the chirality at the two Dirac cones is opposite. Unlike before,
here, we observe no wave front dislocations.
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function of the radial direction. ΔρinterðE; rÞ is more
interesting; in addition to radial oscillations with period l
coming from the Bessel functions, there are also wave
fronts propagating in the ΔK̄ direction with period
jΔK̄j−1. Importantly, the two oscillatory terms differ by a
spatial phase 2ϕr. To understand the effect of this
phase, we write cosðΔK̄ ·r−2ϕrÞ¼ cosðΔK̄ ·rÞcosð2ϕrÞþ
sinðΔK̄ ·rÞsinð2ϕrÞ, and observe that the wave fronts are
modulated by trigonometric functions that change signs
twice as we go around a simple closed loop, resulting in two
wave front dislocations. If we go around in a circle at a fixed
r for which ℑ½tðEÞK2

0ðr=ilÞ� < ℑ½tðEÞK2
1ðr=ilÞ�, then the

change in LDOS contains these two wave front dislocations,
as shown in Figs. 2(d) and 2(e). The prefactor of ϕr is given
by the difference in chirality of the two Dirac cones, and thus
the presence of wave front dislocations in LDOS is a
measure of the relative chirality. The LDOS obtained
experimentally will contain all backscattering processes,
including those related by reciprocal lattice vectors.
Because of that, to observe the density dislocations in
practice, we need to filter out only time-reversed pairs of
momenta that are near the relevant Dirac cones, as illustrated
in Fig. 3. Then, the dislocations, if present, will be contained
in the dark-field reconstruction of the LDOS.
We now consider a different effective model of TBLG in

which the flat-band Dirac cones in the same valley have
identical chirality. In this case, it is not possible to construct
a tight-binding model which contains only two orbitals and
still retains a local representation of the C2T symmetry that
protects the valley-projected Dirac points. We need to
include additional bands to capture the correct topology,
as done in [8]. However, these auxiliary bands can be sent
to high energies since they do not correspond to the actual
band structure of TBLG. Thus, as long as we are probing at

energies close to the Dirac cones, these auxiliary bands can
be safely neglected. In this limit, the low-energy effective
Hamiltonian is similar to Eq. (1), but the chirality is
identical at the two cones

HðK̄þ qÞ ¼ −ℏṽFq · σ;

HðK̄0 þ qÞ ¼ −ℏṽFq · σ: ð4Þ

If we now place an impurity in this system with scattering
potential as in Eq. (2), then the induced change in LDOS
will not feature wave front dislocations previously seen, as
shown in Figs. 2(f) and 2(g). This markedly different
interference pattern serves as a diagnostic of the two
competing effective models of the valley-projected flat
bands in TBLG.
To illustrate the analysis procedure from experimental

data, we study impurities localized on the atomic scale
located at s within a moiré unit cell calculated directly from
the continuummodel [28,29]. The presence of a dislocation
in LDOS depends on s, and appears only in the fast-
Fourier-transform-filtered images. When s is in the AA
region, we do not observe a dislocation, but when s is in a
region where the sublattice on which the impurity sits is
aligned with another sublattice of the other layer, then we
observe one wave front dislocation, shown in Fig. 3. Even
though atomic impurities serve as illustration of nontrivial
density dislocations, they are not practically relevant since
their signals are difficult to disentangle from those of
disorder.
Our analysis so far relies crucially on the ability to design

an impurity that polarizes one Wannier sublattice. This is,
however, a nontrivial task because the Wannier orbitals in
TBLG are spatially distributed and overlapping [6–8], as
shown in Figs. 2(b) and 2(c). It is known that the Wannier

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIG. 3. Each row shows the change in LDOS induced by an impurity placed on an AB region (top row) or an AA region (bottom row).
(b) and (h) show the full interference pattern, and (c) and (i) show the magnitudes of their fast Fourier transforms (FFT). From the FFT,
we filter out time-reversed pairs of momenta in three independent directions, and then calculate the inverse FFT to observe the density
wave fronts. Panels (d)–(f) and (j)–(i) show the wave front interference pattern after applying corresponding FFT filters indicated on the
insets. As can clearly be seen, (d)–(f) feature one wave front dislocation. On the contrary, (j)–(l) do not have any dislocation.
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orbitals in a single valley have p� symmetry [7,8]. So if the
resonant bound state carries angular momentum m ≠ �1,
then its overlap with the Wannier orbital on which it is
centered vanishes. In particular, if we place a T-symmetric
quantum dot centered on an AB region, then its bound state
will only have significant overlap with Wannier orbitals at
the three neighboring BA regions. In this case, the far-field
interference patterns induced will be identical to those
produced by the scattering potential in Eq. (2). This
establishes the relevance of our proposal in experimental
settings. Next, we provide some parameter estimates as
further motivation, using values from [7]. In a scanning
tunneling spectroscopy (STS) experiment that probes
LDOS, the bias potential must be set at an energy
where the linear approximation to the flat bands holds.
Approaching the magic angle, this is challenging because
the bandwidth there becomes quite small. At slightly larger
angles, θ ¼ 2°–1.5°, the bias potential can be several tens of
meV, well within experimental capacity. The period of the
wavefronts is jaΔK̄j−1 ≈ 6–8, while the decay of the radial
oscillation is lE=a ¼ 500–1000 meV for θ ¼ 2°–1.5°. In
order to clearly observe the density dislocations, we must
probe at an energy low enough where l > jΔK̄j−1.
However, it must not be too small that the amplitude of
LDOS is suppressed, VcellΔρ ∼U0E2=ð106 meV4Þ for
θ ¼ 2°–1.5°, where Vcell is the unit-cell area and U0 is
small. The scanning window must span multiple wave
fronts in order to observe the dislocations, on the order of
100–200 graphene lattice constants.
We emphasize that this proposal for experimentally

defining the topology of the low-energy bands needs not
be restricted to the magic-angle regime. In fact, there are
some distinct advantages, both in principle and in practice,
to studying larger nearby angles where the low-energy
bands are predicted to be more dispersive, and the zone
corners can be well approximated by massless Dirac
dispersions. The bandwidth at these larger angles is greatly
enhanced, making the active bands easier to interrogate by
varying the tip potentials. Furthermore, for larger angles,
the moiré period becomes shorter, making it easier to scan
many periods with STS. Mixing between valleys can occur
at larger angles, but for θ ∼ 1.5°–2.0°, where the two valleys
are still well-separated in momentum space, we expect this
effect to remain minimal. For angles very close to a magic
angle, it will be important to extend this approach to look at
the effects of mean-field interaction-driven density wave
instabilities.
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