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We show that there is an emergent lattice description for the continuous fractional quantum Hall (FQH)
systems, with a generalized set of few-body coherent states. In particular, model Hamiltonians of the FQH
effect (FQHE) are equivalent to the real-space von Neumann lattice of local projection operators imposed
on a continuous system in the thermodynamic limit. It can be analytically derived that tuning local
one-body potentials in such lattices amounts to the tuning of individual two- or few-body pseudopotentials.
For some cases, we can realize pure few-body pseudopotentials important for stabilizing exotic non-
Abelian topological phases. Thus, this new approach can potentially lead to the experimental realization of
coveted non-Abelian quantum fluids including the Moore-Read state and the Fibonacci state. The
reformulation of the FQHE as a sum of local projections opens up new paths for rigorously proving the
incompressibility of microscopic Hamiltonians in the thermodynamic limit.
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The fractional quantum Hall (FQH) systems are prom-
ising candidates for hosting anyonic and non-Abelian
excitations that are topologically protected with strong
interactions between electrons [1,2]. With these exotic
properties, the relevant two-dimensional electron gas
systems are robust for storing and processing quantum
information, serving as potential physical platforms for
topological quantum computers [3]. Experimentally, how-
ever, there has been no conclusive evidence for the non-
Abelian statistics, even for the simplest non-Abelian FQH
states: the Moore-Read (MR) state at half filling [4–9]. For
universal quantum computation, the theoretically proposed
Fibonacci FQH state [10,11] at filling factor ν ¼ 3=5 is
needed. While the MR state is constructed as the ground
state of the model Hamiltonian with a three-body inter-
action, the model Hamiltonian for the Fibonacci state
requires a much more complex four-body interaction [2].
Many other interesting FQH states have been proposed
theoretically with model Hamiltonians in the form of
pseudopotentials, but the rich topological structures of
these states are largely beyond the reach of experiments
at the current stage.
One of the main challenges for exotic non-Abelian FQH

states is that the model Hamiltonians are highly artificial.
While, in realistic systems, the electron-electron interaction
is derived from the two-body Coulomb interaction, exact
non-Abelian FQH states typically require three or more
body interactions [12]. Numerical studies for small systems
seem to indicate that it is possible for two-body realistic
interactions to be adiabatically connected to some simple
artificial model Hamiltonians based on wave function
overlaps, and most works focused on the Moore-Read
state [13–15]. It is, however, difficult to deduce the

topological properties of realistic systems in the thermo-
dynamic limit. This is especially true for the non-Abelian
states, in which the non-Abelian statistics are determined
by degeneracies of elementary excitations. Thus, the
ground state incompressibility gap, as well as the low-
lying excitation bandwidth, need to be carefully tuned in
experiments [16,17]. Unfortunately, experimental tuning of
the electron-electron interaction is highly constrained.
There is also limited theoretical guidance on the optimal
Coulomb based Hamiltonians that can mimic three or more
body interactions [18,19].
Theoretically, there are also fundamental and unproven

questions on the incompressibility of model Hamiltonians
(or realistic Hamiltonians close to them) [20]. Despite
overwhelming numerical evidence, there is no rigorous
proof that the model Hamiltonians are gapped in the
thermodynamic limit, even for the simplest Laughlin states.
It is also conjectured that certain model Hamiltonians (e.g.,
for the Gaffnian state) are gapless [21,22], but whether the
gap closes in the same or different quantum sector as the
ground state has important implications for the topological
nature of the FQH phase [17]. For example, the Gaffnian
and the Jain ground state at ν ¼ 2=5 could be topologically
equivalent if all translationally invariant excitations are
gapped. For strongly correlated systems, there are rigorous
proofs in spin systems when the model Hamiltonians
are the sum of real-space projections [e.g., the
Affleck-Kennedy-Lieb-Tasaki (AKLT) model [23–26] ]. In
contrast, FQH model Hamiltonians are projections of
particle cluster angular momenta in the continuum limit,
so the same methodologies do not seem to apply.
In this Letter, we show the equivalence of the von

Neumann lattice (vNL) of local projections in real-space
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and conventional model FQH Hamiltonians. Explicit
derivations are presented for the Read-Rezayi series,
showing FQH states (including non-Abelian, exotic ones
such as the Moore-Read state and the Fibonacci state) can
be realized with a vNL of properly tuned local potentials.
The construction of the local projections is reminiscent of
the classical local exclusion conditions proposed in
Ref. [27], but the lattice of such projections is a well-
defined quantum Hamiltonian in the continuum that can, in
principle, be realized experimentally. There are interesting
analogies between this new form of FQH Hamiltonians and
the spin Hamiltonian for the AKLTmodel. The latter can be
rigorously shown to have a gap due to the unique properties
of the projection operators. Thus, the equivalence we
establish here provides new routes for potentially proving
the incompressibility of FQH Hamiltonians in the thermo-
dynamic limit.
The projection Hamiltonians.—It has been numerically

established [27] that the model ground states of many FQH
phases can be uniquely determined by two constraints:
translational or rotational invariance and the classical
reduced density matrix constraint. The latter is denoted with
a triplet of non-negative integers ĉ ¼ fn; ne; nhg. Physically,
it dictates for any small droplet containing n fluxes (thus,
with an area of 2nπl2B, lB being the magnetic length), a
measurement in this droplet can never detect more than ne
number of electrons or nh number of holes [unoccupied
orbitals in a single Landau Level (LL)]. For example, ĉl ¼
f2; 1; 2g dictates that no more than one electron and nomore
than two holes can be detected in any circular droplet
containing two fluxes in the quantum fluid. It gives the
Laughlin state at filling factor ν ¼ 1=3 and topological
orbital shift Sh ¼ −2. Another example is ĉf ¼ f4; 3; 4g,
giving the Fibonacci state at ν ¼ 3=5 and Sh ¼ −2.
These classical constraints do not correspond exactly to

any local Hamiltonians, and cannot be exactly implemented
in real space. We can, however, define the local projection
operator as follows:

H0 ¼
X
i

jψ iihψ ij; ð1Þ

where each state jψ ii consists of n orbitals of the symmetric
gauge around the origin in a single LL, and the summation
is over all such states that do not satisfy ĉ ¼ fn; ne; nhg.
Diagonalization of Eq. (1) in the sub-Hilbert space of
translationally invariant states will lead to the ground state
of the corresponding FQH state. Within the full Hilbert
space, however, we cannot obtain the FQH ground state
because Eq. (1) is not translationally invariant.
To construct a translationally invariant analog of Eq. (1),

we briefly review the well-known vNL formalism in a
single LL, and introduce the notations [28–30]. Using the
guiding center coordinates R̂x; R̂y with the commutation
relation ½R̂x; R̂y� ¼ −il2B, these operators only have matrix

elements within a single LL. We can construct the ladder
operators b̂ ¼ ðR̂x − iR̂yÞ= ffiffiffi

2
p

lB and ½b̂; b̂†� ¼ 1. Denoting
the single particle state centered at the origin as
jni ¼ 1=

ffiffiffiffiffi
n!

p ðb̂†Þnj0i, with b̂j0i ¼ 0. Thus, j0i is the
coherent state at the origin.
Given the commutation relation of R̂x; R̂y, the magnetic

translation operator is given by T̂X⃗ ¼ Q
i e

iXaR̂
a
i , where

Einstein’s summation convention is adopted and the sub-
script i runs over all electrons. Thus, the state jX⃗i ¼ T̂X⃗j0i
is the coherent state centered at ra ¼ l2Bϵ

abXb in the real
space. These states are not orthogonal but form a complete
basis with X⃗ as a continuous variable. This basis is
obviously overcomplete, since the total number of linearly
independent states in a single LL is A=ð2πl2BÞ, where
A is the area of the sample. A minimal complete
basis of the coherent states can be formed from a square
vNL with rx ¼ ffiffiffiffiffiffi

2π
p

lBp; ry ¼
ffiffiffiffiffiffi
2π

p
lBq, where p, q

are integers. Thus, rewriting jX⃗i ¼ jp; qi, we haveP∞
p;q¼−∞ jp; qihp; qj ¼ I . This relationship also works

if we replace j0i with jni in the above analysis.
The generalization of Eq. (1) at a single site to the vNL is

straightforward, since we can form the vNL where each site
contains more than one electron. Denoting jψð0⃗Þi as a state
of a circular droplet centered at the origin, we have
jψðX⃗Þi ¼ T̂X⃗jψð0⃗Þi. The resulting state describes the
circular droplet centered at ra ¼ l2Bϵ

abXb. Thus, in the
thermodynamic limit, with A → ∞ or lB → 0, the vNL
effective Hamiltonian can be constructed as follows:

H ¼
Z

d2r
2πl2B

jψðX⃗ÞihψðX⃗Þj: ð2Þ

Because of the completeness of the vNL, Eq. (2) is
translationally invariant in a single LL. If jψ iðX⃗Þi is a
single electron state, Eq. (2) is just the identity matrix.
It turns out that Eq. (2) becomes highly nontrivial when

jψ iðX⃗Þi contains two or more electrons. The simplest
example is to look at jψð0⃗Þi ¼ j0; 1i, describing
a droplet containing two fluxes, both occupied by
electrons. Here, we define js1;s2;…;sNe

i¼ĉ†s1 ĉ
†
s2 ���ĉ†sne j0i∼

asy½ðb̂†1Þs1ðb̂†2Þs2 ���ðb̂†neÞsne �j0i as the ne-electron Slater
determinant state, with asy denoting antisymmetrization
over electron indices (the subscript); ĉ†i is the second
quantized electron creation operator. The two-body matrix
elements of Eq. (2) can be derived as follows:

Ĥ ¼
X

m;n;m0;n0
Vm0;n0
m;n ĉ†m0 ĉ†n0 ĉmĉn; ð3Þ

Vm0;n0
m;n ¼

Z
d2r
2πl2B

hm0; n0jT̂X⃗j0; 1ih0; 1jT̂X⃗jm; ni: ð4Þ

The integration over the entire two-dimensional plane
can be carried out explicitly, and Eq. (3) is equivalent to the
well-known model Hamiltonian V̂2bdy

1 for the Laughlin
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state at ν ¼ 1=3, given by the first Haldane pseudo-
potential. Thus, the vNL of local potentials in the thermo-
dynamic limit gives the exact spectrum of the Laughlin
quantum Hall fluids. Such equivalence can be established
analogously for the entire Read-Rezayi series. The three-
body model Hamiltonian V̂3bdy

3 for the MR state can be

obtained by taking jψð0⃗Þi ¼ j0; 1; 2i. The four-body model
Hamiltonian V̂4bdy

6 for the Fibonacci state can be obtained

by taking jψð0⃗Þi ¼ j0; 1; 2; 3i.
Thus, we have a simple interpretation of the vNL of

coherent states in a single LL, if we use these coherent
states as projection operators in the form of Eq. (2).
Conventionally, the coherent state is a droplet of one
electron in one magnetic flux, and the completeness of
the vNL leads to an identity matrix as the Hamiltonian,
corresponding to the integer quantum Hall effect. If the
coherent state is generalized to a droplet of n electrons in n
magnetic fluxes, the corresponding vNL Hamiltonians are
n-body model Hamiltonians of the Read-Rezayi series.
Model Hamiltonians for many other FQH states (e.g., the
Laughlin series, the Gaffnian, and Haffnian states, etc.) can
be similarly shown to be equivalent to the vNL of
projection operators from coherent states. This is because
a coherent state can be a droplet containing any number of
fluxes, with different arrangements of electrons in the
droplet, in analogy to the local exclusion conditions
(LEC) constraints introduced in Ref. [27].
Experimental relevance.—The derivation of model

Hamiltonians from the vNL projectors not only reveals
new perspectives on the physical nature of these
Hamiltonians, it also naturally leads to a new way for
the experimental realization of exotic FQH fluids. If there
are some mechanisms in mimicking Eq. (1) at a single
location, e.g., with some local potential profile and
Coulomb blockade effects, then a proper lattice pattern
of such local mechanisms, in principle, can realize the
effective projection Hamiltonians and, thus, the topological
phases in a robust manner. In particular, we can engineer a
lattice of antidots of the size of a few magnetic fluxes, with
tunable on-site potentials. Such a lattice will not break
translational symmetry in a single LL, since the spacing
between lattice points is on the order of

ffiffiffiffiffiffi
2π

p
lB. This could

be particularly useful for few-body interactions, since LL
mixing is not required. Thus, one can go to large magnetic
fields for large incompressibility gaps.
In principle, we can tune the relative strength of any few-

body states on the antidots. Here, we look at a simple but
more restrictive effective local one-body anharmonic well,
which is, nevertheless, an interesting example for tuning
individual two or more body pseudopotentials. We would
like to emphasize that the setup cannot be realized just by a
simple one-body potential profile. It needs delicate Coulomb
blockadelike effects that could be technically challenging.
The effective potential well is given as follows:

V̂0 ¼
Xn
k¼0

λkjkihkj: ð5Þ

The upper limit n in the summation gives the range of the
local potential, covering an area of ∼2nπl2B. Denoting a state
containing ne number of electrons as jk1 � � � knei, with
ki ≤ n, a vNL of the local potential given by Eq. (5) leads
to the effective Hamiltonian following the construction of
Eq. (2):

H ¼
Z

d2r
2πl2B

X
λk1���kne jk1 � � � kneihk1 � � � kne j; ð6Þ

λk1���kne ¼ λk1 þ λk2 þ � � � þ λkne ; ð7Þ

where all states not in the summation are presumably not
present due to the blockade effect. The vNL of ne ¼ 1

projections in Eq. (6) leads to a uniform background potential
that can be ignored. Each vNL of ne electron projection leads
to a linear combination of ne-body pseudopotential inter-
actions. For example, j0; 1i; j0; 2i both give V̂2bdy

1 only, j0; 3i
gives V̂2bdy

1 ; V̂2bdy
3 ; j0; 1; 2i; j0; 1; 3i gives V̂3bdy

3 , while

j0; 1; 2; 3i; j0; 1; 2; 4i gives V̂4bdy
6 , and so on [31].

The coefficients of the linear combination of pseudopo-
tentials for the vNL of each jk1 � � � knei can be computed
analytically. For example, with n ¼ 2 [with n from Eq. (5)
giving the range of local potential], the corresponding vNL
effective Hamiltonian is given by [31]

Ĥ ¼
Z

d2r
2πl2B

λ0;1j0; 1ih0; 1j þ λ0;2j0; 2ih0; 2j

þ λ1;2j1; 2ih1; 2j þ λ0;1;2j0; 1; 2ih0; 1; 2j

¼
�
2λ0;1;2 −

3

4
λ1;2

�
V̂2bdy
1 þ 3

4
λ1;2V̂

2bdy
3

þ 2

3
λ0;1;2V̂

3bdy
3 ; ð8Þ

where we have ignored the uniform background. For n ¼ 3,
we have the following, instead [31]:

Ĥ ¼
�
11

4
λ0;1;2;3 − λ1;2;3 −

3

8
λ2;3

�
V̂2bdy
1

þ
�
1

4
λ0;1;2;3 þ λ1;2;3 −

1

4
λ2;3

�
V̂2bdy
3 þ 5

8
λ2;3V̂

2bdy
5

þ
�
7

3
λ0;1;2;3 −

8

27
λ1;2;3 −

2

3
λ2;3

�
V̂3bdy
3

þ
�
2

3
λ0;1;2;3 −

4

9
λ1;2;3 þ

2

3
λ2;3

�
V̂3bdy
5

þ 20

27
λ1;2;3V̂

3bdy
6 þ λ0;1;2;3V̂

4bdy
6 : ð9Þ

Some comments are in order here. For n ¼ 1, the vNL
effectively adds a single two-body pseudopotential of V̂2bdy

1
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for any positive λ0, λ1. This allows us to tune a single
pseudopotential in an experimental FQH system, leaving
the rest of the pseudopotentials from electron-electron
interaction intact. For n ¼ 2 in Eq. (8), there are three
tuning parameters λ0, λ1, λ2. While we cannot obtain a pure
V̂3bdy
3 , we can, nevertheless, obtain the optimal two-body

interaction [32] with ð2λ0;1;2 − 3
4
λ1;2Þ=ð34 λ1;2Þ ¼ 3, further

enhanced with a single positive three-body interaction
V̂3bdy
3 . For example, with λ0;1;2 ¼ 1; λ1;2 ¼ 2

3
, Eq. (8) is

effectively 3
2
V2bdy
1 þ 1

2
V2bdy
3 þ 2

3
V3bdy
3 . This vNL could be

used to stabilize the Pfaffian state even in the lowest LL
[see Fig. 1 and, also, some numerical results in [31] ]. One
can similarly tune the anharmonic confining potential for
n ¼ 3 to maximize V̂2bdy

4 or to design more complicated
local potentials (beyond one body) to enhance the incom-
pressibility gap of the Fibonacci state.
Incompressibility gap.—The equivalence of the vNL

local projectors and the model Hamiltonians for the
Read-Rezayi series allows us to treat the FQH effect as
a “continuous” version of the AKLT model. The
Hamiltonian of the latter is given by a lattice of overlapping
projection operators for the neighboring spin Hilbert space.

Like the AKLT model, the FQH ground state is “frustration
free”, satisfying the projection operators everywhere. The
special property of the projection operators P̂2 ¼ P̂ leads to
rigorous proof of the ground state gap in the thermo-
dynamic limit for the AKLT model [23,24]. The lower
bound of such a gap can also be established from the gap of
finite systems with open boundary conditions [25,26].
Thus, the reformulation of the FQH model Hamiltonians
can potentially lead to rigorous proof of the incompress-
ibility gap in the thermodynamic limit as well, a long-
standing problem of fundamental importance.
While a rigorous proof is still not available, we discuss

some interesting properties arising from this reformulation.
Using Laughlin phase as an example, we write
P̂i ¼ T̂X⃗i

j0; 1ih0; 1jT̂†
X⃗i
. Any translationally invariant

eigenstate jψαi with eigenvalue ϵα gives

ϵα ¼
A

2πl2B
hψαjP̂jψαi; ð10Þ

where A is the area of the Hall manifold, and P̂ ¼
j0; 1ih0; 1j is used because of translational invariance.
Equation (10) implies the energy gap of an excited state
jψαi depends on the reduced density matrix of a circular
droplet containing two single particle orbitals centered
at the origin. More specifically, we can write jψαi¼
cα1jvacijψ̃α1iþcα2j0ijψ̃α2iþcα3j1ijψ̃α3iþcα4j0;1ijψ̃α4i,
where jψ̃αii belongs to the Hilbert space outside of the two-
flux droplet. Thus, for any state with finite energy ϵα in the
thermodynamic limit, we have jcα4j decaying at least as fast
as N−1=2

e . Therefore, the necessary and sufficient condition
for ϵα to be finite and nonzero is

lim
Ne→∞

jcα4j2 ∼A−1: ð11Þ

Equation (11) implies that if there is a nonvanishing
probability of finding two electrons in a circular drop
containing two magnetic fluxes anywhere in the Hall fluid,
the state has to be gapped. The excitation gap here refers to
only translationally invariant excitations that have the same
quantum numbers as the ground state. The ground state is
incompressible if it is the only state where the LEC
condition [27] applies. Such uniqueness has been estab-
lished numerically, which is another point of evidence apart
from the finite size scaling of the energy gap itself.
Summary and outlook.—We show by forming a von

Neumann lattice of local potentials in the Hall manifold, the
effective Hamiltonian does not break translational sym-
metry in the Hilbert space of a single LL. Instead, it is
analytically equivalent to short range projection
Hamiltonians, representing two- or few-body pseudopo-
tential interactions. In general, a periodic potential in a
single LL splits the degeneracy of the single particle
orbitals and forms sub-bands [33–36]. These are cases

FIG. 1. (a). The radial profile of the one-body potential
approximating Eq. (8), when it is 3

2
V2bdy
1 þ 1

2
V2bdy
3 þ 2

3
V3bdy
3 .

The inset shows the potential profile in the two-dimensional real
space, and the schematics of the von Neumann lattice. (b). The
potential contour of the von Neumann lattice of the local
potentials in (a). This potential profile can lead to a much larger
incompressibility gap and ground state or quasihole state overlap
to the model states, as compared to the Coulomb interaction in the
second Landau level [31].
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where the lattice spacing is much larger than the magnetic
length. Nontrivial physics arises in the form of Hofstadter
states or quantum anomalous Hall insulators [37–40].
Interestingly, here with the vNL (i.e., lattice spacing
∼

ffiffiffiffiffiffi
2π

p
lB), there is effective translational invariance in a

single LL, and the resulting Hamiltonians are equivalent to
pure electron-electron interactions.
Experimentally, if it is technically possible to impose

closely packed local potentials on the Hall bar and to
accurately tune the potential profiles, the results in this
Letter present the exciting possibility of tuning individual
pseudopotential (including three- or four-body pseudopo-
tentials, etc.), as well as the robust realization of coveted
non-Abelian FQH phases (e.g., the MR and the Fibonacci
states). The spacing between local potentials needs to be on
the order of ∼30 nm with B ¼ 5 T, and ∼20 nm with
B ¼ 10 T. This is technically feasible using the formation
of antidot arrays with the current e-beam processing
technology. We would also like the local potentials to be
overlapping: the range of the potential is larger than the
potential spacing. It can be achieved if a spacer with proper
thickness is synthesized between the antidot array and the
Hall manifold. The accurate tuning of the local potentials
could be more feasible in the cold atom systems, with more
flexibility in tuning the entire photonic lattice [41,42]. The
local projection approach may also be applicable to FQH-
like physics in spin systems [43], leading to new platforms
for non-Abelian topological states.
The construction of Eq. (2) is analogous to the projection

operators in quantum magnets, e.g., the AKLT model,
where translationally invariant Hamiltonians are achieved
by projection operators on every pair of neighboring spins.
In both cases, while the quantum Hamiltonian cannot
impose local truncation of Hilbert space exactly (for spin
chains, each spin is shared by different projection
operators, analogous to nonorthogonality of coherent states
in vNL), the ground states of such Hamiltonians, never-
theless, do satisfy local truncation of the Hilbert space
everywhere and, thus, are free of frustration. The gapless
edge states in FQH are also analogous to the ground state
degeneracy of the open boundary AKLT chain. The
reformulation of the model interaction Hamiltonian as
local real-space operators may lead to analytical proofs
of long-standing problems about the incompressibility of
such Hamiltonians. Unlike the AKLT model, however,
each projection operator in the vNL acts on the same
Hilbert space no matter how far away they are separated.
Thus, one cannot directly apply Knabe’s argument [25] in
determining the lower bound of the excitation gap.
However, the local Hilbert space shared by two operators
decays exponentially with their separation. A more detailed
analysis on the spectral gap of the vNL Hamiltonian will be
presented elsewhere.
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