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With density functional molecular dynamics simulations, we computed the phase diagram of MgO from
50 to 2000 GPa up to 20 000 K. Via thermodynamic integration (TDI), we derive the Gibbs free energies of
the B1, B2, and liquid phases and determine their phase boundaries. With TDI and a pseudo-quasi-
harmonic approach, we show that anharmonic effects are important and stabilize the B1 phase in particular.
As a result, the B1-B2 transition boundary in the pressure-temperature plane exhibits a steep slope. We
predict the B1-B2-liquid triple point to occur at approximately T ¼ 10000 K and P ¼ 370 GPa, which is
higher in pressure than was inferred with quasiharmonic methods alone. We predict the principal shock
Hugoniot curve to enter the B2 phase stability domain but only over a very small range of parameters. This
may render it difficult to observe this phase with shock experiments because of kinetic effects.
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While early ground-based exoplanet search campaigns
detected only giant exoplanets [1], the following surveys
conducted with the Kepler [2] and CoRoT [3] spacecrafts
determined that most exoplanets have between one and four
Earth radii and thus rocky and icy interiors are most
common. The determination of the equations of state
(EOS), phase diagrams, and physical properties of the
materials that are likely to be present in the interiors of
exoplanets is a cornerstone in characterization and model-
ing of these newly discovered and unexpectedly diverse
objects. Magnesium oxide is one of the most abundant
materials in Earth [4], and is assumed to be a major
component in Super-Earths as well [5,6]. MgO is also
likely present in the core of Mini-Neptunes and icy giants
[7,8]. Even in the interior of gas giant planets, MgO may be
present as a constituent in a partially dissolved core [9–11].
In order to describe these different planets, a careful
characterization of MgO on a wide range of pressure-
temperature conditions is needed. For instance, in Earth,
the core-mantle boundary is at 135 GPa while in the gas
giant planets, the typical pressure values at boundary
between the rocky cores and the gas envelope reaches
several TPa. The corresponding temperature may be as high
as 20 000 to 30 000 K [12].
In Earth’s mantle, MgO occurs in an NaCl-type (B1)

structure [13,14]. At approximately 600 GPa, a trans-
formation to a CsCl (B2) structure has been observed
experimentally [15]. However, the exact pressure-temper-
ature conditions of this phase transition are still highly
debated. At 0 K, ab initio calculations based on lattice
dynamics place the transition around 500 GPa [16] while

quantum Monte Carlo simulations predict it at approxi-
mately 600 GPa [17]. At finite temperature, most ab initio
lattice dynamics calculations predict a negative Clapeyron
slope but the steepness of the slope varies significantly
from one calculation to another [18–23].
The melting curves of the B1 and B2 phases are not yet

well determined. Various numerical methods predicted a
melting temperature that differed by up to 2000 K in the
multimegabar regime [19–22,24]. A direct consequence of
this uncertainty is a significant variability in the location of
the triple point. It has been predicted to occur as low as
250 GPa and 8000 K with the quasiharmonic approxima-
tion for the solids [25] while calculations that relied on
molecular dynamics predicted higher values up to 364 GPa
and 12 000 K [19]. The differences between these two types
of predictions provide some indication that anharmonic
effects must be particularly important for the determination
of the MgO triple point.
Magnesium oxide has also been studied experimentally,

especially along the principal shock Hugoniot curve using
single and decaying shock waves [13,20,26–28]. Both
decaying shock experiments [26,27] exhibited a region
where the shock temperature increased significantly with
decreasing pressure. However, the pressure-temperature
conditions, where this drop was observed, were not in
perfect agreement. Thus, in one study it has been attributed
to the B1-B2 phase transformation and to shock melting in
the other. The inconsistency in these findings and their
interpretation underlines the need for additional investiga-
tions with complementary experimental and computational
methods.
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In this Letter we report results from density functional
molecular dynamics (MD) simulations in combination with
thermodynamic integration in order to derive the Gibbs free
energy with high precision. We constrain the location of the
triple point and derive the stability fields of B1, B2, and
liquid phase up to 2000 GPa. All phases are treated
consistently with the same method. Since our Gibbs free
energy calculations rely on MD, anharmonic effects are
naturally included. By comparing with the quasiharmonic
approximation, we demonstrate that the anharmonicity is
much more important in the B1 than in the B2 phase.
Contrary to quasiharmonic predictions, we find a much
steeper Clapeyron slope for the B1-B2 phase transition.
Finally we derive the shock Hugoniot curve. Consistent
with earlier work, we predict this curve to first encounter
the B1-B2 transition and then the melting transition,
although detecting these transitions in experiments may
be hindered by kinetic effects.
We performed our MD simulations with the Vienna

ab initio simulation package (VASP) [29]. We kept the
density and temperature constant, employing a Nosé
thermostat [30,31]. The simulation cell contained 64 atoms
for the liquid and B1 phases, and 250 for the B2. We
confirmed that the residual finite-size effects were negli-
gible for the purpose of this study. When we increased the
number of atoms we only observed deviations less or equal
to 0.5% in pressure and 0.1 mHa per atom in the energy.
We even ensured that the phase boundary of the B1-B2
transition was converged with these cell sizes. We used a
time step of 0.5 fs for a total duration of at least 2 ps for the
large cells and 10 ps for the small ones. These are only
simulation times used for averaging. We ensured that the
cells were fully equilibrated before performing the
averages. The density functional theory (DFT) calculation
was performed using the finite temperature [32] Kohn-
Sham scheme [33]. We employed the Perdew, Burke, and
Ernzerhof (PBE) functional [34]. We used projector aug-
mented wave (PAW) pseudopotentials [35] with 1s2 frozen
cores. We used only the Γ point to sample the Brillouin
zone since it yielded results that were consistent with those
from denser K-point grids. We set the energy cutoff to
1200 eV. The number of bands was adjusted to capture the
full spectrum of partially occupied states accurately.
The Helmholtz free energy was computed using the

thermodynamic integration (TDI) technique [36–44]. For
given density, temperature, and phase, we smoothly
switched between an ensemble governed by the DFT
potential UDFT to a classical potential Ucl of known free
energy Fcl. For the liquid phase, we used a set of non-
bonding pair potentials fitted to forces derived from MD
simulations at high temperature in order to include a
sufficient number of strong collisions [43]. As described
in Ref. [42], for the solid phases, we combined classical
pair potentials with Einstein potentials that were fitted to
solid simulations of the B1 and B2 phases. We chose to not

apply a center-of-mass correction [45] since it appears that
the usual Frenkel et al. correction is overestimating the
actual necessary correction (see Supplemental Material
[46]). More recent derivations of the center-of-mass
correction [47] have a negligible impact on the phase
diagram even for 64 atoms.
We also performed phonon calculations in order to

characterize the importance of anharmonic effects. First
we extracted the phonon eigenfrequencies and eigenvectors
for the B1 and B2 phases using the finite displacement
method at T ¼ 0 K. We employed the same ab initio
parameters as in our MD simulations. The eigenfrequencies
allowed us to compute the Helmholtz free energy at finite
temperature in the quasiharmonic approximation [48].
We studied the temperature dependence of the phonon

frequencies using our MD trajectories. For a given con-
figuration, we projected the MD velocities on every
eigenvector in a set of phonon modes obtained for the
same density at T ¼ 0 K. By repeating this projection for
many configurations along a trajectory, we computed the
autocorrelation function of the mode-projected velocities
and extracted their characteristic frequency by Fourier
transform [49]. This projection quasiharmonic approach
(PQHA) allows us to obtain at finite temperature a
corrected set of eigenfrequencies that captures some but
not all the anharmonic effects in the system. Using these
updated frequencies, we derived corrected free energies.
To determine the relative stability of the different phases,

we computed the Gibbs free energy G ¼ F þ PV for every
density-temperature point. In our QHA calculations, we
used the QHA free energies but the pressure term that we
have derived from DFT-MD. While not entirely consistent,
it allows us to compare more directly with the TDI results
and determine how much the B1-B2 phase boundary is
shifted by anharmonic effects. For each phase and tempera-
ture, we used a cubic spline interpolation of the Gibbs free
energy as a function of the pressure. When compared with
other interpolation schemes we found very similar results.
For given P and T, we identified the phase with the lowest
Gibbs free energy to be the most stable. A phase transition
occurs where Gibbs free energies are equal. The uncer-
tainties shown in our figures are the propagated 1σ error
bars. For instance, to derive the error bars in Fig. 1 we
proceeded in two steps. First, for each simulation we used a
blocking average method [50] to determine the statistical
uncertainty on the pressure and the free energy. Second, as
we locate the intersection of two Gibbs free energy
interpolations to determine the phase boundaries, we also
used finite differences to determine the derivative of the
transition pressure with respect to each interpolation
parameters. Combining these derivatives with the uncer-
tainties in an error propagation formula we obtained the
error bars plotted on Fig. 1.
Fig. 1 shows our phase diagram. We derived the MgO

melting curve between 7000 and 20 000 K, and between 80
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and 1800 GPa, which includes the B1 and B2 branches at
lower and higher pressures. Our B1 melting line is in good
agreement with predictions by Miyanishi et al. [21] and
Taniuchi et al. [22] but slightly lower than that of Boates
and Bonev [19]. We also note that our phase diagram is
consistent with the experimental results from Fat’yanov
et al. [28] who found the B1 MgO phase to be stable at
248 GPa and 9100 K. For the B2 melting line we find a
globally lower melting temperature, except at very high
pressure, for which we find a higher melting temperature
than Taniuchi et al. For the B1 and B2 phases, we fitted the
melting line with a P-T power law as a guide for the eye
since the error bars near the triple point are fairly large.
The most striking feature in our MgO phase diagram is

the location of the B1-B2 phase transition. With the TDI
method, we obtained among the steepest slope in the
pressure-temperature plane. As a result we obtain a fairly
high pressure for the triple point. By looking at the
intersection of the fitted melting lines with the fitted
B1-B2 boundary, we estimate the triple point to lie at
approximately 10 000 K and 370 GPa. These results are
compatible with the sole experiment that directly observed
the MgO B2 phase in ramp compression and x-ray
diffraction [15] but in contrast to other numerical results
that were reported in the literature [16,18,20,21], all
exhibiting a negative but shallower Clapeyron slope and
much lower pressure and temperature for the triple point.
However, our predictions for the B1-B2 phase transition are
in very good agreement with Refs. [19,23] who included
strong anharmonicity in their calculations.
To characterize the anharmonic effects, we performed a

systematic phonon study of the B1 and B2 phases. In Fig. 2,
we compared the phonon spectra that were derived from the
QHA at zero temperature with the spectra obtained from
PQHA at finite temperature. At T ¼ 0 K, on average, the
phonon frequencies are lower in the B2 than in the B1

phase. With rising temperature, the average frequency of
the B2 phase increases very slightly while a significant
softening of the vibrational modes is seen for the B1 phase.
This provides a first indication that anharmonic contribu-
tions affect both phases very differently.
In Fig. 3, we compared the Helmholtz free energy

derived with TDI, QHA, and PQHA. In the B2 phase,
we retrieve a very similar free energy with QHA and
PQHA, as expected, based on the very similar average
frequencies (see Fig. 2). The properties of the phonon in the
B2 phase are thus nearly temperature independent. The TDI

FIG. 2. Phonon spectrum of the B1 phase at 6.78 (top panel)
and the B2 phase at 7.27 g=cm3 (bottom panel) at 0 and 8000 K.
The vertical line shows the average frequency for each spectrum.

FIG. 1. MgO phase diagram. Left: Low temperature part of the B1-B2 phase transitions. Our TDI results (stars) are compared with
Refs. [51,18–25]. Middle: Comparison of our B1-B2-liquid phase boundaries with the literature. Right: Comparison of the melting line
up to 2000 GPa.
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calculations in Fig. 3 predict only a slight reduction in the
free energy compared to the QHA at high temperature.
We can thus conclude that anharmonic effects are marginal
in the B2 phase.
The Helmholtz free energy of the B1 phase is much more

sensitive to anharmonic effects as we have concluded from
the deviations between the predictions from QHA and
PQHA already. TDI and PQHA predict free energies that
are lower than those obtained with the QHA. This deviation
is strongly temperature dependent. This means the higher
order terms in the potential decomposition need to be taken
into account over the entire temperature range under
consideration, not just close to the melting line where
one would expect them to be the most important. Except for
a simple offset, the TDI calculations in Fig. 3 predict a very
similar behavior for the free energy as the PQHA, which
explains the agreement with Boates and Bonev [19] since
they employed vibrational spectra similarly to the PQHA
method. Based on our results, we conclude that QHA
cannot capture the exact behavior of the B1 phase as
temperature increases.
In Fig. 1 our QHA results retrieve the typical negative

shallow slope of the B1-B2 transition that has been
reported in the literature [16,18,20–22]. The phonons as
computed by QHA favor the B2 phase. Conversely, the TDI
results as well as methods including a high level of
anharmonicity favor a steep Clapeyron slope. From our
TDI and PQHA results, we infer that anharmonic effects
stabilize the B1 phase. The difference between the QHA
and the TDI at 0 K is due to the inclusion of the zero-point
motion in the QHA.

Our B1-B2 transition pressure differs from the recent
prediction by Taniuchi et al. [22], who provide a single
B1-B2 transition point using a different form of TDI. Based
on the information provided in their article, we were not
able to identify the reasons for the discrepancy.
As shown in Fig. 4, our predictions for the Hugoniot

curve in the B1 phase agree well with the single shock
experiments [13] at low pressure. At pressures lower than
350 GPa, the calculated B1 Hugoniot is in agreement with
Bolis et al. decaying shock experiments [27]. For the B1
phase, we also calculated a Hugoniot curve with an initial
state that was preheated at 1850 K. We found excellent
agreement with the very precise measurements from
Fat’yanov et al. [28]. The calculated liquid Hugoniot is
within the error bars of Bolis et al. [27] but slightly lower
than McWilliams et al. [26]. We also computed the
Hugoniot prediction for the B2 phase but it spans a small
range of pressures. The predicted Hugoniot somewhat lies
close to the experimental measurements. But we notice
also that the calculated B2 Hugoniot is relatively close to
the B1 Hugoniot because the volume difference is small.
Thus, the large discontinuity observed in the experiment
cannot be satisfactorily explained by a B1-B2 transition.
Based on our phase diagram and Hugoniot curves, for
shock experiments that reach thermodynamic equilibrium,
we predict, as pressure increases, the Hugoniot curve to
pass through the B1 phase, then to briefly exhibit a B2
phase and then to follow the B2 melting line before
entering the liquid phase. However, due to the uncertainty
on the exact location of the triple point it is possible that

FIG. 3. Helmholtz free energy difference between TDI or
PQHA calculations and the QHA predictions for the B1 phase
at 6.78 (full circles) and B2 phase at 7.27 g=cm3 (open diamonds)
as a function of the temperature. The full lines show the results of
our TDI calculations; the dotted lines stand for our PQHA
predictions.

FIG. 4. Comparison of experimental and ab initio Hugoniot
curves along with the MgO phase diagram as derived with TDI.
The thick lines correspond to our Hugoniot calculations for B1
(blue), liquid (red), and B2 (green) phases. We plotted the
experimental results of single shocks [13], decaying shocks
[26,27], and preheated shocks [28]. We also show our ab initio
prediction for a double shock Hugoniot curve (thin line) starting
from an initial shock that had reached 5000 K, as well as the
calculated result for a B1 1850 K preheated Hugoniot (thin dash-
dotted line).
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the principal Hugoniot actually goes right on top of the
triple point.
It is difficult to predict what happens in shock experi-

ments that do not necessarily reach thermodynamic equi-
librium. The direct comparison of computed predictions
with the decaying shock experiments thus requires caution.
Nevertheless the observed discontinuity is at slightly lower
temperature conditions than our B1 or B2 melting line. But
experiments as well as ab initio simulations have uncer-
tainties. It might be possible in principle to reconcile the
experimental and our computational predictions. It is
possible that the experimental shock conditions come very
close to the triple point and that a mixture of B1, B2, and
liquid was generated. This would explain the presence of
a single discontinuity. We advocate for the development
of shock experiments coupled to high accuracy x-ray
measurements and applied to MgO. In Fig. 4, we give
an example for a double shock experiment that reaches
deeply into the domain of the B2 phase and for which it
would be easier to detect the B1-B2 transition with x rays.
Overall, with ab initio methods, we computed the phase

diagram of MgO from 50 to 2000 GPa and determined the
boundaries between B1, B2, and liquid phases. With two
methods, TDI and PQHA, we demonstrated that
anharmonic effects at elevated temperatures shift the
B1-B2 transition to higher pressures. While the QHA is
numerically very efficient and convenient, it provides an
insufficient description of MgO at elevated temperatures.
This suggests that similar trends may also occur for other
materials, in particular if anharmonic effects are much
larger in one phase than in another.
Because of such effects, we predict that the principal

Hugoniot curve of MgO to pass through the B1 phase, then
enter briefly the B2 stability region before reaching the
melting line and then the liquid phase. But because of the
closeness to the triple point, the melting and the formation
of the B2 phase may both contribute to the negative dT=dP
behavior observed in recent shock experiments.
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[17] D. Alfè, M. Alfredsson, J. Brodholt, M. J. Gillan, M. D.
Towler, and R. J. Needs, Phys. Rev. B 72, 014114
(2005).

[18] D. Cebulla and R. Redmer, Phys. Rev. B 89, 134107 (2014).
[19] B. Boates and S. A. Bonev, Phys. Rev. Lett. 110, 135504

(2013).
[20] S. Root, L. Shulenburger, R. W. Lemke, D. H. Dolan, T. R.

Mattsson, and M. P. Desjarlais, Phys. Rev. Lett. 115, 198501
(2015).

[21] K. Miyanishi, Y. Tange, N. Ozaki, T. Kimura, T. Sano, Y.
Sakawa, T. Tsuchiya, and R. Kodama, Phys. Rev. E 92,
023103 (2015).

[22] T. Taniuchi and T. Tsuchiya, J. Phys. Condens. Matter 30,
114003 (2018).

[23] J. Bouchet, F. Bottin, V. Recoules, F. Remus, G. Morard, R.
M. Bolis, and A. Benuzzi-Mounaix, Phys. Rev. B 99,
094113 (2019).

[24] R. Musella, S. Mazevet, and F. Guyot, Phys. Rev. B 99,
064110 (2019).

[25] A. B. Belonoshko, S. Arapan, R. Martonak, and A.
Rosengren, Phys. Rev. B 81, 054110 (2010).

[26] R. S. Mcwilliams, D. K. Spaulding, J. H. Eggert, P. M.
Celliers, D. G. Hicks, R. F. Smith, G. W. Collins, and
R. Jeanloz, Science 338, 1330 (2012).

[27] R. M. Bolis, G. Morard, T. Vinci, A. Ravasio, E. Bambrink,
M. Guarguaglini, M. Koenig, R. Musella, F. Remus,
J. Bouchet, N. Ozaki, K. Miyanishi, T. Sekine, Y. Sakawa,
T. Sano, R. Kodama, F. Guyot, and A. Benuzzi-Mounaix,
Geophys. Res. Lett. 43, 9475 (2016).

PHYSICAL REVIEW LETTERS 125, 175701 (2020)

175701-5

http://exoplanet.eu/
http://exoplanet.eu/
https://doi.org/10.1126/science.1185402
https://doi.org/10.1016/0016-7037(91)90090-R
https://doi.org/10.1016/0016-7037(91)90090-R
https://doi.org/10.1016/j.icarus.2005.11.021
https://doi.org/10.1016/j.icarus.2005.11.021
https://doi.org/10.1098/rsta.2013.0076
https://doi.org/10.1016/j.pss.2012.06.019
https://doi.org/10.1016/j.icarus.2016.04.008
https://doi.org/10.1016/j.icarus.2016.04.008
https://doi.org/10.1002/2016JE005080
https://doi.org/10.3847/0004-637X/820/1/80
https://doi.org/10.3847/0004-637X/820/1/80
https://doi.org/10.1002/2017GL073160
https://doi.org/10.1051/0004-6361/201117595
https://doi.org/10.1051/0004-6361/201117595
https://doi.org/10.1111/j.1365-246X.1987.tb01664.x
https://doi.org/10.1111/j.1365-246X.1987.tb01664.x
https://doi.org/10.1103/PhysRevLett.74.1371
https://doi.org/10.1103/PhysRevLett.74.1371
https://doi.org/10.1038/ngeo1948
https://doi.org/10.1063/1.1570394
https://doi.org/10.1063/1.1570394
https://doi.org/10.1103/PhysRevB.72.014114
https://doi.org/10.1103/PhysRevB.72.014114
https://doi.org/10.1103/PhysRevB.89.134107
https://doi.org/10.1103/PhysRevLett.110.135504
https://doi.org/10.1103/PhysRevLett.110.135504
https://doi.org/10.1103/PhysRevLett.115.198501
https://doi.org/10.1103/PhysRevLett.115.198501
https://doi.org/10.1103/PhysRevE.92.023103
https://doi.org/10.1103/PhysRevE.92.023103
https://doi.org/10.1088/1361-648X/aaac96
https://doi.org/10.1088/1361-648X/aaac96
https://doi.org/10.1103/PhysRevB.99.094113
https://doi.org/10.1103/PhysRevB.99.094113
https://doi.org/10.1103/PhysRevB.99.064110
https://doi.org/10.1103/PhysRevB.99.064110
https://doi.org/10.1103/PhysRevB.81.054110
https://doi.org/10.1126/science.1229450
https://doi.org/10.1002/2016GL070466


[28] O. V. Fat’yanov, P. D. Asimow, and T. J. Ahrens, Phys. Rev.
B 97, 024106 (2018).

[29] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[30] S. Nosé, J. Chem. Phys. 81, 511 (1984).
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