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While we fundamentally understand the dynamics of simple cracks propagating in brittle solids within
perfect (homogeneous) materials, we do not understand how paths of moving cracks are determined. We
experimentally study strongly perturbed cracks that propagate between 10% and 95% of their limiting
velocity within a brittle material. These cracks are deflected by either interaction with sparsely implanted
defects or via an intrinsic oscillatory instability in defect-free media. Dense high-speed measurements of
the strain fields surrounding the crack tips reveal that crack paths are governed by the direction of maximal
strain energy density, even when the near-tip singular fields are highly disrupted. This fundamentally
important result may be utilized to either direct or guide running cracks.
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So long as a crack propagates along a straight path, we
have an excellent understanding of its motion [1–4] within
perfect (homogeneous) materials. Cracks, however, can
change direction. How is the direction selected by a
propagating crack determined? In ideal brittle materials,
the elastic fields at the tips of moving cracks are singular
[1]. For such cracks, empirical criteria for path selection
include the principle of local symmetry (PLS), [5] whereby
a crack will rotate so as to negate any singular shear (“mode
II” component) at its tip, and the principle of maximal strain
energy density, whereby a crack will choose the direction
that maximizes the strain energy dissipated at its tip [6].
PLS has been derived using variational methods in 2D [7].
Two-dimensional analysis [8] and experiments [9] suggest
that both criteria for path selection are approximately
equivalent for quasistatic cracks, whose velocities are a
small fraction of their limiting velocity, the Rayleigh wave
speed cR. Three-dimensional calculations [10] suggest that
quasistatic cracks, beyond a transitional region set by the
microscopic scales surrounding a crack’s tip, indeed respect
the principle of local symmetry. Energy considerations [11]
have also been used to identify quasistatic crack paths.
The fundamental question, however, of what determines

a dynamic crack’s path has long been open [12,13].
Dynamic cracks propagate at a finite fraction of cR.
While the principle of local symmetry predicts that the
singular shear (mode II) component must always be zero at
crack tips, experiments reveal [14] that a nonzero mode II
component can actually be sustained at the tips of dynamic
cracks propagating along straight trajectories. This is
consistent with the linear stability analysis of a straight
dynamic crack’s path to singular shear stresses; straight
cracks are stable until losing their stability to infinitesimal
perturbations [15] at extreme velocities. Experimentally,
this instability corresponds to intrinsic path oscillations

[13,16]. The path selected by these oscillations is not
a priori known.
These oscillations occur in perfect “homogeneous”

materials. When materials have defects, slow cracks
interact with them, and the crack front can pin or deform
[17–20]. Interactions with defects may also deflect [21] or
even arrest a crack. How such defects will affect the paths
of dynamic cracks is an open question.
Here, we experimentally probe the dynamic path selec-

tion of cracks resulting from both dilute rigidly embedded
inclusions and the intrinsic oscillatory instability in perfect
(homogeneous) brittle isotropic materials. In both cases, the
singular field undergoes large perturbations. We find that,
in these cases, the crack selects a path along which the
strain energy density is maximal.
We visualize fully dynamic propagation by using poly-

acrylamide [3,22] hydrogels. These compliant materials, in
which cR is slowed to ∼5.3 m=s, are representative of the
broad class of materials that undergo brittle failure; the
fields at their tips are singular [2,4,15,23] and they have
been used to verify predictions of fracture mechanics for
cracks propagating at all velocities.
Here, we use polyacrylamide hydrogels composed of a

total monomer concentration of 13.7% (wt) with a 2.7 wt %
cross-linker as in [2,4,15,23]. Details of our materials and
methods are provided in the Supplemental Material [24].
We define the coordinate directions in the unstressed frame
of reference, such that y is aligned with the applied loading,
and x is perpendicular to this direction. The vertical
(y direction) boundaries of the gel samples were sand-
wiched between two grips that were rigidly displaced to
produce desired strains. The magnitude of the applied
strain governed the mean crack velocities in the measure-
ment area. We used “strip” samples (x × y dimensions of
60 × 40 mm) to study crack-particle interactions. Samples

PHYSICAL REVIEW LETTERS 125, 175501 (2020)

0031-9007=20=125(17)=175501(5) 175501-1 © 2020 American Physical Society

https://orcid.org/0000-0002-9752-3523
https://orcid.org/0000-0002-5960-0487
https://orcid.org/0000-0002-8381-6675
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.175501&domain=pdf&date_stamp=2020-10-19
https://doi.org/10.1103/PhysRevLett.125.175501
https://doi.org/10.1103/PhysRevLett.125.175501
https://doi.org/10.1103/PhysRevLett.125.175501
https://doi.org/10.1103/PhysRevLett.125.175501


of size 200 × 200 mm were used for the oscillatory
instability studies. Strip samples were sparsely seeded with
50 μm diameter rigid particles that adhere tightly to the
surrounding gel (see Supplemental Material [24]). The
center 10 × 6 mm sections were illuminated and imaged
with a fast camera (IDT Y7 S3) at 8000 frames=s, as
shown schematically in Fig. 1(a). Each of the camera’s
2000 × 1000 pixels was mapped to 6 × 6 μm. Applied
strains varied from 10% to 25% in strips and were about
6% in oscillatory experiments. At desired strains, cracks
were triggered by cutting the middle of sample edges
at x ¼ 0.
Deformation fields were determined by measuring the

distortions of a 2 μm deep reference grid embossed on one
surface of each sample. In the unstressed “reference” frame,
grid dimensions were 60 μm along each side. Deformations

were measured by comparing the distances between
adjacent grid points in the laboratory frame to the
unstressed grid. This enabled high-precision deformation
measurements in the reference frame, despite the strong
rotations and high strains near crack tips that would
challenge cross-correlation methods. Grid point locations
were determined to 1=3 pixel. We calculated the deforma-
tion gradient tensor via finite differences of neighboring
grid displacements. Corresponding stresses were calculated
using neo-Hookean elasticity [2,28] and plane-stress
conditions were assumed. Figures 1(b) and 1(c) present
typical results for homogeneous and particle-embedded
samples near dynamic crack tips.
Paths of dynamic cracks with velocities 0.1 < v=cR <

0.8 are often tortuous due to interactions with particles.
Nearby particles alter or even destroy the singular strain
fields predicted by fracture mechanics. When no particles
are embedded, the predicted singular fields are obtained
[14,29]. Since gels are constrained to zero displacement at
rigid particle boundaries [24], strain fields deviate strongly
from the singular, K dominant (K=r1=2) scaling predicted
by linear elastic fracture mechanics (LEFM) and its non-
linear extensions [2,25,29–31], as shown in Fig. 1(c).
Why do rigid microscopic inclusions induce such large

perturbations? A rigid inclusion imposes an additional
boundary condition, negligible strain, at its boundaries.
Studies of the interactions between cracks and inclusions
go back to the beginnings of fracture mechanics [32,33];
calculated stress intensity factors for static cracks can be
significantly either enhanced or reduced by interactions
with an inclusion. These predictions are consistent with our
experimental observations of dynamic cracks, where the
presence of even a single rigid inclusion will produce a
huge perturbation at any location where unperturbed
stresses are large, such as near a crack tip. Even if an
inclusion is minute in size, the resultant pinning of the
strain field at the inclusion will entirely alter the magnitude
and symmetry of the stresses surrounding a crack’s tip. This
is clearly exemplified in the example of crack arrest
presented in the Supplemental Material [24].
Interactions with embedded particles can, therefore,

profoundly affect crack propagation. This is readily
observed in even a single image, as the parabolic
CTODs predicted from LEFM is distorted and asymmetric
[Fig. 2(a)]. In the strip geometry, cracks in homogeneous
media propagate at steady velocities [3,12]. Upon
encountering particles, cracks can significantly change
their velocity and direction within microseconds, as seen
in Figs. 2(b) and 2(c).
By calculating the local deformation tensor, we can

evaluate path selection criteria. All such calculations are
both carried out and presented in the material reference
frame. These measurements enable us to calculate the strain
energy density (SED) at each grid point (see Supplemental
Material [24] for details). Figure 3 presents a typical
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FIG. 1. Experimental system. (a) Brittle polyacrylamide gel
sheets are loaded in tension, and dynamic cracks are initiated at
sheet edges. Collimated light-emitting diode (LED) beams
produced shadowgraph images of shallow grids embossed on
gel surfaces. Grid deformations provide instantaneous displace-
ment and strain fields near crack tips. (b) Top: a crack
(v ∼ 0.25cR) within a pure gel sample with no embedded
particles. Bottom: the measured εyy strain component has the
r−1=2 scaling (inset) predicted by LEFM of εyy along y ¼ 0.
(c) Top: a crack (v ∼ 0.3cR) approaches embedded polyamide
spheres (highlighted by diamonds). Bottom: nearby particles
strongly affect the εyy field (see also Supplemental Material [24]).
Inset: εyy along the path selected by the crack (blue) strongly
deviates from LEFM predictions (red).
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example in which a moving crack has changed its direction.
In the figure, we compare the direction predicted by the
maximal strain energy density criterion with the crack’s
actual path. Presented is the map of the strain energy
density at each grid point (the contribution of the back-
ground strain is included). Starting at the crack tip, for each
x position, we note the y location in which the strain energy
density is maximal. The direction, determined by fitting a
straight line to the energy density maxima ahead of the
crack tip, is in excellent agreement with the propagation
direction that leads to the subsequent crack tip location.
In Fig. 4 we consider an experiment where a straight

crack loses stability to oscillations, while propagating
through a particle-free medium. When v > 0.9cs, cracks
undergo spontaneous oscillations [2,13,16] that rapidly
deflect their tips by large (> 30°) angles. In Figs. 4(b)
and 4(c), we analyze two typical instances. As we observed
for cracks deflected by particles (Fig. 3), the criterion of
maximal SED again provides excellent predictions for the
directions instantaneously selected by the crack. During
these oscillations, stress fields at the crack tip are strongly
perturbed, relative to those of a straight crack [Figs. 4(b)
and 4(c), right]. These strong perturbations are due to loss

FIG. 2. Crack tip path deviation and acceleration upon encoun-
tering particles. (a) Interactions with embedded particles cause
crack tip opening displacements (CTODs) to become non-
parabolic and force cracks to deviate significantly from straight
paths. We define a crack tip as the leading point in the CTODs, as
denoted by the red dot. (b) A time series of images separated by
0.125 ms, as a crack rapidly evolves while interacting with
embedded particles (yellow diamonds). Its resulting path,
denoted by the red line connecting successive crack tips (red
dots), becomes tortuous. (c) Corresponding local tip velocities,
normalized by cR ¼ 5.3 m=s, as a function of time. Such particles
may even induce crack arrest (see Supplemental Material [24]).
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FIG. 3. The SED-based prediction agrees well with observed
propagation directions. (a) A typical crack (≈0.5cR) whose
trajectory is governed by crack-particle interactions. The trajec-
tory is indicated by the red line. Particles are outlined by yellow
diamonds. (b) The SED (in J=m3) field ahead of the crack within
the dashed red box in (a). Magenta diamonds denote the maximal
value for the SED for each value of x in the reference frame.
Current and future tip locations are indicated by red dots. Linear
fits (magenta arrow) to the local SED maxima ahead of the tip
agree well with the future crack tip location. Yellow diamond: a
particle location.
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FIG. 4. The maximum SED criterion predicts the instantaneous
direction of oscillatory cracks. (a) The trajectory of a sponta-
neously oscillating crack propagating at approximately 0.95cR ∼
0.9cs in a homogeneous gel at the onset of the oscillatory
instability [16,23]. The trajectory of successive crack tips leading
to this instant is denoted in red. (b),(c) At left, snapshots of the
crack tip in the laboratory frame that are indicated by yellow dots
in (a). Center: the respective SED fields, in J=m3, in the material
area ahead of each crack tip. As in Fig. 3(b), diamonds denote the
locations of the maximal SED value for each x. The line fitted to
these maxima agrees well with the propagation direction denoted
by the red line connecting the sequential tips (red dots). Predicted
(measured) angles were 30° (31°) in (b) and −40° (−36°) in (c).
Right: εyy (in blue) along the trajectory direction compared to the
LEFM prediction (red). Singular fields are highly perturbed by
large amplitude waves excited by crack oscillations.
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of symmetry accompanied by high-amplitude waves
emitted by these rapidly oscillating cracks that transmit
the crack’s history to the crack tip vicinity. These pertur-
bations to εyy are roughly the size of those resulting from
crack-particle interactions [see Fig. 1(c), inset].
Are the examples in Figs. 3 and 4 representative of

dynamic crack path selection in general? In Fig. 5, we
compare the predictions of the SED criterion to measured
values from numerous experiments, where 0.1 < v=cR <
0.95 and selected propagation directions ranged over �60°.
The deflected angles corresponded to both crack-particle
interactions and from the oscillatory instability. As the
locations and numbers of particles within each frame are
random, each crack-particle interaction experiment relates
to an entirely different configuration of particles relative to
both the crack tip and crack orientation. We see that the
maximal strain energy density criterion (Fig. 5) agrees well
with all of the measured paths. The accuracy of the
predictions is therefore independent of the details of
how crack deflections take place.
The results in Fig. 5 clearly demonstrate that a dynamic

crack’s path is determined by the SED criterion. It has long
been known that, upon initiation, directions selected by
static cracks in homogeneous media (when subjected to
remote mixed-mode loading) [8,9] are consistent with both
the SED and principle of local symmetry. Both criteria were
originally conceived for cracks whose stresses are deter-
mined by a dominant leading-order singularity at their tip.
Theoretically, both criteria are essentially indistinguishable
when small perturbations are applied to the singular fields
prescribed by LEFM [8].
What has fundamentally changed when material pinning

locations are dispersed along a crack’s path or strong
oscillations of a crack’s tip occur? Insight is provided by

the near-tip strain fields along the propagation direction
[Figs. 1(c) and 4], which show that the structure of the
deformation fields ahead of the crack tip is no longer the
ubiquitous singular strain fields characteristic of homo-
geneous materials. The near-tip stress fields in both cases
are strongly varying in space and time, generally asymmetric,
and often effectively blunt the singularity of the fields within
this region. These significant deviations from singularity
apparently render the PLS inapplicable (see [13]), even as
cracks continue to propagate and select their direction. In
contrast, the SED criterion, when performed in the “inter-
mediate” region in which the singular fields are not dom-
inant, remains an excellent predictor of a crack’s local path.
The characteristic parabolic form of crack tips away from

the near-tip region suggests, however, that, on average, the
singular fields may be retained at spatial scales that are much
larger than the spacing between inhomogeneities. At these
scales, the observed mean path deviations become quite
small. As we demonstrate in the Supplemental Material [24],
the direction of the axis of symmetry of the parabolic
CTODs formed away from the crack tip (but still close
enough that information from the crack tip can reach them in
the 0.125 ms intervals between frames) corresponds to the
direction in which shear within the asymptotic region near
the crack tip is zero. Therefore, in a “mesoscopic” sense,
PLS may be restored.
One might argue that the local path selection embodied in

the SED criterion may be less relevant than a criterion (such
as the PLS) that works at the mesoscale. Is predicting the
erratic meandering of a crack’s tip in response to localized
perturbations necessary, if a crack’s mean direction can be
predicted? In the Supplemental Material [24], we demon-
strate that a crack tip’s interaction with even a single isolated
particle in the near field can be so significant that a crack can
transition from rapid (v ¼ 0.4cR) fracture to complete arrest.
Moreover, we have seen that the SED is incredibly good at
describing crack tip directions in unperturbed isotropic
materials when cracks become unstable to the oscillatory
instability at extreme velocities (v > 0.9cR) [16]. In both of
these cases, crack dynamics at the near-tip scale are critical.
While the far-field scales supply the energy flux to the crack
tip needed for propagation, the local stress configuration
does have global consequences, determining how, if, and
when a crack will propagate.
In short, this Letter provides clear experimental evidence

that the maximum SED criterion clearly selects crack
directions. This empirical observation both raises a theo-
retical challenge and provides a possible way to better
understand how imperfections influence the fracture of
heterogeneous or hybrid materials.
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FIG. 5. All deflected crack directions are accurately predicted
by the maximum SED condition. Filled circles: predicted angles
for 21 crack-particle interactions with differing v=cR (colors) and
particle ensembles (2 –6 particles=mm2). Open symbols are due
to the oscillatory instability. Open (closed) triangles are sequen-
tial data from Fig. 4 (Fig. 2). Horizontal (vertical) error bars are
the (1=3 of the) point sizes. Dashed line represents perfect
agreement.
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