
 

Generic Rotating-Frame-Based Approach to Chaos Generation in Nonlinear
Micro- and Nanoelectromechanical System Resonators

Samer Houri ,* Motoki Asano, and Hiroshi Yamaguchi
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan

Natsue Yoshimura, Yasuharu Koike, and Ludovico Minati †

Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan

(Received 26 February 2020; revised 26 July 2020; accepted 9 September 2020; published 23 October 2020)

This Letter provides a low-power method for chaos generation that is generally applicable to nonlinear
micro- and nanoelectromechanical systems (MNEMS) resonators. The approach taken is independent of
the material, scale, design, and actuation of the device in question; it simply assumes a good quality factor
and a Duffing type nonlinearity, features that are commonplace to MNEMS resonators. The approach
models the rotating-frame dynamics to analytically constrain the parameter space required for chaos
generation. By leveraging these common properties of MNEMS devices, a period-doubling route to chaos
is generated using smaller forcing than typically reported in the literature.
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Chaotic dynamics have received interest owing to their
extraordinary ability to generate complex behaviors, such
as synchronization patterns, even in simple and fixed
arrangements of coupled nodes. Countless applications
have been discussed, spanning control systems, telecom-
munications and neuroscience [1–4]. Recently, the field has
witnessed a resurgence of interest due to the possibility of
building large-scale hardware reservoirs from coupled
nonlinear oscillators. To meet the requirements for practical
application, high-integration and low-power implementa-
tions are necessary [5,6].
Micro- and nanoelectromechanical systems (MNEMS)

provide experimental platforms for investigating and
generating such dynamics, as they are easily amenable
to very large-scale integration, low-power operation, and
they inherently exhibit rich nonlinear behavior [7,8].
Indeed, chaos generation is well reported in the MNEMS
scientific literature [9–19].
However, chaos generation reported in the literature for

MNEMS devices resorts to nongeneral properties, e.g.,
nonsmooth nonlinearity [12], a high number of phase space
dimensions (n > 3) obtained via interdevice or intermodal
coupling [9–11], or extreme nonlinearity by operating near
the electrostatic pull in [14,15]. A widespread approach is
based on the creation of a static double-well potential either
through electrostatic forces or by using buckled structures
[16–18,20]. None of these approaches hinges around a
common denominator property: they are, therefore, not
transferable to nonlinear MNEMS resonators in general. In
fact, they commonly require a large actuation voltage, thus
negating one of the main appeals of MNEMS devices
[12,14–18].

An interesting case is that of the static double-well
potential, which is described by a Duffing equation (a
system possessing a cubic nonlinearity [21]) where the
linear component is negative and the cubic component is
positive. Period-doubling bifurcations and chaos in such
systems have been studied [22] and been subject to
experimental investigations [23–25]. While such systems
can be reproduced in MNEMS devices [16–18,20], nearly
all MNEMS devices inherently exhibit a different type of
cubic nonlinearity [26], equally captured by a variant of the
Duffing equation, whereby the linear component is positive
and the cubic component can be either positive or negative.
Such MNEMS resonators can exhibit dynamic bistability
[27,28].
In contrast to the static double-well systems, which can

only be created through the use of specific materials or
designs [14–18,29,30], the approach presented here relies
on the dynamically generated double-well pseudopotential
that is created when a generic nonlinear Duffing resonator
is driven into the bistable regime [27]. Since bistability is
accessed when the resonator’s vibration amplitude is on the
same order as some scaling parameter (e.g., thickness [26]),
such pseudopotentials can be generated and manipulated by
changing the drive conditions without requiring device or
setup redesign.
The main purpose of this Letter is to demonstrate chaos

generation in a perturbed “dynamic double well” in a
manner that parallels chaos generation in driven “static
double-well” systems, albeit with significantly lower drive
amplitudes. Thus, two narrowly spaced drive tones are
applied to the system, whereby the first creates the
“dynamic double well” and the second perturbs it [31].
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Since the displacement of the MNEMS resonator studied
herein is moderate, i.e., on the order of the structural
thickness, then a perturbation-based approach to analyze
the dynamics is justified [27,32–34]. To represent the
underlying dynamics we employ the rotating frame
approximation (RFA), whereby a slow flow (a time-varying
envelope) dynamics is overlaid on top of an otherwise
purely sinusoidal response, and the timescales (τ) associ-
ated with this slow flow are on the order of the resonator
linewidth (γ), i.e., τ ≈Oð1=γÞ [27,32].
When a Duffing resonator is driven near resonance, its

steady-state response as seen in the RFA corresponds to a
fixed point in the phase space; in case the resonator is
driven into the bistable regime, the response shows two
distinct stable fixed points and a saddle point [33]. This
latter configuration implies that homoclinic connections
(i.e., trajectories that start and end in the saddle point and
orbit one of the stable fixed points) may exist in the RFA
phase space of a Duffing resonator. Thus, just as a “static
double-well” potential provides homoclinic connections in
the rest frame, so does the dynamic Duffing bistability
provide homoclinic connections in the rotating frame, and
it is the perturbation of such homoclinics that is responsible
for the generation of chaos [22,24,35]. It can be further
shown that compared to the static double well, the use of
the dynamic bistability brings amplitude gains that are on
the order of

ffiffiffiffi
Q

p
(see the Supplemental Material [36]).

This argument can be demonstrated by considering the
Duffing equation for a two tone-driven MNEMS resonator,
given as [27]

ẍþ γ _xþ ω2
0xþ αx3 ¼ ηF1 cosðω1tÞ þ ηF2 cosðω2tÞ; ð1Þ

where x is the displacement, and γ, ω0, α are, respectively,
the damping, natural frequency, and Duffing nonlinearity
of the resonator. F1, F2, ω1, and ω2 are the amplitudes
and frequencies of two externally applied driving forces,
and η is the transduction coefficient. We introduce di-
mensionless constants as t̄¼ t×ω0, γ̄¼ γ=ω0, ᾱ ¼ α=ω2

0,
F̄1 ¼ ηF1=ω2

0, and F̄2 ¼ ηF2=ω2
0. Hereon, all equations are

written using this form, however, the bars are dropped for
convenience.
The application of the RFA, in which the modal displace-

ment takes the form xðtÞ ¼ AðtÞ cos½ω1tþ ϕðtÞ�, whereAðtÞ
and ϕðtÞ are slowly varying amplitude and phase envelopes,
gives the following rotating-frame system:

8>>><
>>>:

_X ¼ δY − 3
8
αA2Y þ 1

2
½F2 sinðΘÞ − γX�

_Y ¼ −δX þ 3
8
αA2X − 1

2
F1 − 1

2
½F2 cosðΘÞ þ γY�

_Θ ¼ Ω ¼ ðω2 − ω1Þ=ω0

ð2Þ

where X ¼ A cosðϕÞ and Y ¼ A sinðϕÞ are the rotating-
frame quadratures, A2 ¼ X2 þ Y2, and δ ¼ ðω1 − ω0Þ=ω0

(details are provided in the Supplemental Material [36]).

Since Eqs. (1) and (2) are generically applicable to
Duffing-type resonators, the results below can, in principle,
be implemented in various physical realizations of non-
linear resonators, such as optical [37] and superconducting
resonators [38], without loss of generality.
Initially, consider the conventional case with only one

applied force, i.e., F2 ¼ 0, whereby the system in Eq. (2) is
reduced to the first two equations only. The fixed points of
the system, obtained by setting the time derivative in Eq. (2)
to zero, exhibit a bistable response in a region of the
dimensionless parameter space shown in Fig. 1(a) for a
lossless and a low-loss (γ ¼ 10−3) driven Duffing reso-
nators. To visualize the phase space and associated homo-
clinic orbits, we select a constant-force cut through the
parameter space, Fig. 1(b), and then a constant-detuning
cut where bistability exists, Fig. 1(c). It is convenient to plot
the RFA Hamiltonian (HRFA) [39,40], shown in Fig. 1(c),
along with the fixed points. For the case γ ¼ 0, trajectories
on the HRFA surface follow closed orbits around the fixed
points, the so-called libration orbits [41]. A homoclinic
orbit is then the limit case in which the libration orbit
intersects the saddle point, as shown in Fig. 1(c).
Note that for F2 ¼ 0 the system of Eq. (2) is reduced to

an autonomous two-dimensional system (n ¼ 2), which
cannot generate chaos as it lacks the necessary dimension-
ality. However, an additional time dependence introduced
by making F2 ≠ 0 increases the RFA dimensions from
n ¼ 2 to n ¼ 3, thus in principle meeting the condition for
chaos generation. Thus, by setting F2 ≠ 0 chaos could be
generated if the homoclinic orbits are sufficiently per-
turbed. The introduction of higher-order perturbation terms
in Eq. (2) could in principle induce chaos even for F2 ¼ 0.

0 5 10-5-10
0

4

8

12

Homoclinic
exists

No Homoclinic

10-3

(a)

0 5 10-5
10-3

A
m

p
lit

u
d

e

(b)

(c)

R
FA

0 5 10-5-10
0

4

8

12

Homoclinic
exists

No Homoclinic

10-3

(a)

0 5 10-5
10-3

A
m

p
lit

u
d

e

(b)

(c)

R
FA

FIG. 1. (a) Bistability map plotted as a function of dimension-
less force and detuning, showing the region of bistability for a
lossless driven Duffing resonator (gray area), and for a low-loss
(Q ¼ 1000) Duffing resonator (area between the dashed blue
lines). (b) Amplitude (arbitrary units) versus detuning response of
a lossless Duffing taken for F1

ffiffiffi
α

p ¼ 10−4. The corresponding
phase-space plot (also in arbitrary units) for a detuning of δ ¼
2.5 × 10−3 is shown in (c). The stable fixed points and the saddle
point are shown as black and green dots, respectively, and the
black traces correspond to the homoclinic orbits. Small amplitude
libration orbits around the high-amplitude branch (blue) and low-
amplitude branch (red) are shown. α is the Duffing parameter.
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However, any time dependence conferred by these
higher-order terms only becomes significant near the
homoclinics, i.e., the saddle-node bifurcation points.
The above arguments are corroborated by a combination

of numerical simulations and measurements. The experi-
ments are performed using a microbeam GaAs piezo-
electric microelectromechanical systems resonator driven
into the nonlinear Duffing regime, details regarding fab-
rication and basic properties of such resonators can be
found in Ref. [42]. The resonator is placed in a vacuum
chamber, and its motion is measured using a laser Doppler
vibrometer, whose output is fed simultaneously to a lock-in
amplifier and a vector signal analyzer (for experimental
details, see the Supplemental Material [36]). A higher
harmonic mode is selected for these experiments to avoid
possible intermodal interactions [43,44].
The application of a single-tone sweep produces the

frequency response shown in Fig. 2(a) for the linear
(100 mVPP, black trace) and nonlinear Duffing regimes
(3 VPP, red and blue traces), which, upon fitting, give
the following values for the resonator parameters ω0=2π ¼
1.56 MHz, Q ¼ 1000, and α ¼ 1.67 × 1015 Hz=V2.
As a first demonstration of the period-doubling route to

chaos, a two-tone excitation is applied to the resonator with
one fixed tone in the bistability region (F1 ¼ 3 VPP,
ω1=2π ¼ 1566.5 kHz) and one swept tone. For large
detunings between the two tones, the rotating-frame
response corresponds to a low-amplitude libration oscil-
lation having a frequency Ω. As the tone is swept, the
oscillations exhibit a quick succession of period-doubling
bifurcations leading to chaos, as shown in Fig. 2(b) for both
the high- and low-amplitude branches. The corresponding
phase-space plots for period 1 (P1), period 2 (P2), and
chaotic attractors are shown in Figs. 2(c)–2(e), respectively.
Note that, as will be demonstrated later, Fig. 2(b) indicates
that the low-amplitude branch only generates chaos for
negative detuning, i.e., Ω < 0, while the high-amplitude
branch only generates chaos for Ω > 0.
Making F2 ≠ 0 is clearly a necessary but not sufficient

condition for chaos generation, and the question of whether
and where in the four-dimensional parameter space (δ, Ω,
F1, and F2) chaos exists remains to be addressed. While
bounds have been set on the values of F1 and δ such that
bistability exists for F2 ¼ 0, similar bounds for F2 and Ω
have yet to be determined. This task is usually performed
by applying Melnikov’s method, which sets strict con-
ditions for the period-doubling bifurcation route to chaos to
take place [22–25,45–47].
Ideally, the application of Melnikov’s method constrains

chaos generation in parameter space with an analytical
bound. Unfortunately, straightforward application of
Melnikov’s integral to the archetypal nonlinear resonator
captured by Eq. (1) results in a relation that is not easily
amenable to analytical solution. Therefore, in order to
obtain a rough analytical bound, a heuristic approach

analogous to the one employed in Ref. [23] is used.
This approach considers that the application of a second
forcing term creates the libration orbits, and the amplitude
at which these libration orbits are large enough to undergo
interwell jumps is considered to be a lower bound for the
onset of period-doubling bifurcation. Provided that, if
jΩj ≪ γ no chaos is generated [48], and if jΩj ≫ γ the
RFA is no longer valid. By linearizing the libration orbit
around the fixed point, an approximate closed-form bound
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FIG. 2. (a) Experimental lock-in amplifier data for the fre-
quency response obtained by a single tone sweep showing the
linear (black trace 100 mVPP) and the Duffing regimes (3 VPP);
the latter shows bistability upon performing a forward (blue trace)
and a backward sweep (red trace). H denotes the relative
amplitude response, expressed in mV per V drive. (b) Scatter
plot of periodically sampled libration oscillation under the effect
of a two-tone excitation, with one fixed tone (indicated by F1

having ω1=2π ¼ 1566.5 kHz and F1 ¼ 3 VPP) and one swept
tone (F2 ¼ 2.1 VPP, 1558 kHz < ω2=2π < 1576 kHz), shown
for the lower (red) and higher (blue) amplitude branches. Period
1, period 2, and chaotic oscillations are detected and shown in
(c)–(e), respectively, for both the high (blue) and low (red)
amplitude branches. The black dots correspond to the exper-
imentally-obtained fixed points, and the crosses correspond to the
calculated saddle point.
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for the period-doubling route to chaos can then be
expressed as (see the Supplemental Material [36] for a
detailed derivation):

F2C1;3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðωL −ΩÞ2 þ γ2

q
× jA2 − A1;3j; ð3Þ

where F2C1 and F2C3 indicate the critical F2 necessary to
induce period doubling, ωL is the libration frequency, and
A1, A2, and A3, are the amplitudes of the three steady-state
fixed points, with A1, A3 as the stable ones, and A2 being
the unstable one. Setting Ω ¼ ωL gives the minimum value
of F2C1;3 which we denote F2 min 1;3.
Equation (3) sheds light on the experimental results in

Fig. 2: by realizing that ωL < 0 for the low-amplitude
branch and ωL > 0 for the high-amplitude branch, it is easy
to understand that period doubling in Fig. 2(b) takes place
mostly for Ω ≈ ωL. This is further confirmed by looking
at the basins of attraction, Fig. 3(a), where, depending

on the value of Ω, only one of the two basins is strongly
disturbed.
A two-dimensional sweep of Ω and F2 provides further

grounds for comparison between the numerical, analytical,
and experimental results. Such a sweep is shown in Fig. 3
for both solution amplitude branches and the same drive
conditions as in Fig. 2, i.e., ω1=2π ¼ 1566.5 kHz and
F1 ¼ 3 VPP. Figure 3 plots the lag of the autocorrelation
maximum for the experimentally and numerically obtained
time-domain signals, where an autocorrelation lag of 1
indicates P1 orbits, a lag of 2 indicates P2 orbits, and so on.
Experimental and numerical data agree well in predicting
the region corresponding to P2, the higher order bifurca-
tions, and chaos. It is also interesting to note that both types
of time-domain data show that for some parameter-space
values interbranch jumps occur, where the system jumps
from the vicinity of one fixed point to the other where it
remains stuck in a low amplitude libration orbit. Chaos is
verified for a selection of experimental traces, where a
correlation dimension [49] of D2 ¼ 2.2� 0.1 and D2 ¼
2.3� 0.1 is estimated for the high- and low-amplitudes
branches, respectively. When a similar analysis is under-
taken for simulated time series, the corresponding largest
Lyapunov exponent calculated directly from the differential
equations is λ1 ¼ 0.141� 0.002 and λ1 ¼ 0.131� 0.002
(see the Supplemental Material [36] and [50–57]).
Both results presented in Fig. 3 validate the main

conclusions of the analytical model; for instance, the P2
bifurcation is mainly obtained with negative detuning for
the low amplitude branch and positive detuning for the high
amplitude branch, as predicted by the libration frequency
analysis. Experimental and numerical results also demon-
strate that the model can help constrain the necessary
parameter space for chaos generation. It is equally
interesting to note that the low-amplitude branch simula-
tions have a well-formed wedge area for period doubling
and chaos, and this is nearer to the analytically constrained
parameter space compared to the high-amplitude branch.
This can plausibly be attributed to the shape of the
libration orbits around the low-amplitude branch, which
more closely resembles circular ones compared to the
almost banana-shaped high-amplitude branch libration
orbits.
Next, we verify how closely the analytical and numerical

results evolve as a function of changing drive conditions
(changing δ or F1). Based on the analytical model, it would
be expected that, as the edge of the bistable area is
approached, the distance between one of the stable fixed
points and the unstable fixed point shrinks to zero, and as a
consequence, the necessary F2 required to achieve P2 and
chaos itself is reduced to zero. This is confirmed numeri-
cally by performing 3D sweeps (δ, Ω, and F2) and tracking
the minimum necessary values of F2 and Ω for the onset
of P2. These are plotted against δ (for F1 ¼ 3 VPP), along
with F2 min and Ωmin as obtained from Eq. (3), in Figs. 4(b)
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FIG. 3. Numerical simulations obtained for δ ¼ 4.2 × 10−3

(i.e., ω1=2π ¼ 1566.5 kHz), and F1

ffiffiffi
α

p ¼ 1.5 × 10−4 (i.e.,
F1 ¼ 3 VPP). (a) Basins of attraction under the effect of
F2 ¼ 0.6F1, Ω ¼ 3.275 × 10−3 for the high-branch, and
F2 ¼ 0.5F1, Ω ¼ −2.7 × 10−3 for the low-branch showing that
only one of the two basins is disturbed depending on the value of
Ω. The white dots and crosses mark the location of the stable and
saddle points in the unperturbed system, respectively. (b) Two-
dimensional maps (both panels) showing the location of auto-
correlation peak as a function of detuning and forcing (Ω, F2).
Values greater than 1 (red and bright areas) indicate period-
doubling bifurcations and chaos. The experimentally obtained
bifurcation areas are equally shown (delineated by the dashed
lines). The area bounded by the analytical model, i.e., F2C, is
shown as the solid yellow lines. The solid vertical lines indicate
where in the (F2, Ω) parameter space the basins in (a) are located.
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and 4(c), respectively. Again, numerical results agree with
the main features of the analytical model, in that both F2

and Ω reduce to zero as the saddle node bifurcation is
approached. Similarly to the results in Fig. (3), the
analytical results for the low-amplitude branch adhere
better to the numerical simulations compared to the
high-amplitude branch ones, which show more exotic
dynamics, a repeated hint that the eccentric libration orbit
is more difficult to model.
It is interesting to ask whether the perturbed homoclinic-

based argument presented above remains valid for the
region where bistability is suppressed by the damping
(note that the Melnikov approach requires bistability in the
lossless version of the system). Indeed, the Melnikov
method requires a homoclinic in the undamped system;
however, it also assumes that the additional damping and
forcing [corresponding to the terms within the brackets in
Eq. (2)] are small, perturbationlike terms. The authors
therefore conjecture that, in the case of suppressed bist-
ability, these terms are sufficiently large to invalidate the
perturbed Hamiltonian approach.
On a practical note, it maybe tempting to pursue chaos

generation by positioning the drive near the saddle-node
bifurcation, as that would require a very small perturbation
tone. This, however, is not an optimal experimental

condition as it would be easy under the effect of noise
to jump to the adjacent potential well and remain stuck
there in a low-amplitude libration orbit. It is therefore more
favourable for practical ends to position the main tone
towards the middle of the bistable region and apply a
moderate-amplitude second tone.
In summary, this Letter presented an approach to chaos

generation in nonlinear MNEMS resonators that uses drive
amplitudes that are smaller than those previously reported.
The method relies on applying two drive tones in order to
make the rotating-frame phase-space three dimensional,
and presents a model that uses linearization of perturbations
within the rotating frame to constrain the parameter space
where chaos can be generated. This approach demonstrates
that once bistability has been accessed via the first applied
tone, chaos can be generated using a lower amplitude
perturbing second tone. The generality of the proposed
method, and the relatively low driving forces involved
underline applicability to a large range of nonlinear
resonators thus potentially placing resonators, particularly
MNEMS ones, as leading candidates for the high-
integration physical implementation of networks and
reservoirs, as well as the experimental investigation of
chaos-related phenomena.
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