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The parameter ϵK describes CP violation in the neutral kaon system and is one of the most sensitive
probes of new physics. The large uncertainties related to the charm-quark contribution to ϵK have so far
prevented a reliable standard-model prediction. We show that Cabibbo-Kobayashi-Maskawa unitarity
enforces a unique form of the jΔS ¼ 2j weak effective Lagrangian in which the short-distance theory
uncertainty of the imaginary part is dramatically reduced. The uncertainty related to the charm-quark
contribution is now at the percent level. We present the updated standard-model prediction
ϵK ¼ 2.16ð6Þð8Þð15Þ × 10−3, where the errors in parentheses correspond to QCD short-distance, long-
distance, and parametric uncertainties, respectively.
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Introduction.—CP violation in the neutral kaon system,
parametrized by ϵK, is one of the most sensitive precision
probes of new physics. For decades, the large perturbative
uncertainties related to the charm-quark contributions have
been an impediment to fully exploiting the potential of ϵK .
In this Letter we demonstrate how to overcome this
obstacle.
The parameter ϵK can be defined as [1]

ϵK ≡ eiϕϵ sinϕϵ
1

2
arg

�
−M12

Γ12

�
: ð1Þ

Here, ϕϵ ¼ arctanð2ΔMK=ΔΓKÞ, with ΔMK and ΔΓK as
the mass and lifetime difference of the weak eigenstates KL
and KS. M12 and Γ12 are the Hermitian and anti-Hermitian
parts of the Hamiltonian that determines the time evolution
of the neutral kaon system. The short-distance contribu-
tions to ϵK are then contained in the matrix element
M12 ¼ −hK0jLΔS¼2

f¼3 jK̄0i=ð2ΔMKÞ, up to higher powers
in the operator-product expansion. Both M12 and Γ12

depend on the phase convention of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix V. The cancellation
of the phase convention in Eq. (1) is manifest if we
use CKM unitarity to express the effective three-flavor
jΔS ¼ 2j Lagrangian in terms of the minimal number of
independent parameters. We therefore define the
Lagrangian with manifest CKM unitarity,

LΔS¼2
f¼3 ¼ −

G2
FM

2
W

4π2
1

ðλ�uÞ2
QS2ff1C1ðμÞ

þ iJ½f2C2ðμÞ þ f3C3ðμÞ�g þ H:c:þ…; ð2Þ

in terms of the real Wilson coefficients CiðμÞ, i ¼ 1, 2, 3,
and four real, independent, rephasing-invariant parameters
J, f1, f2, and f3 comprising the relevant CKM
matrix elements. Here, λi ≡ V�

isVid. The local four-quark
operator

QS2 ¼ ðs̄LγμdLÞ ⊗ ðs̄LγμdLÞ; ð3Þ

defined in terms of the left-handed s- and d-quark fields,
induces the jΔS ¼ 2j transitions. The ellipsis in Eq. (2)
represents jΔS ¼ 1j operators that contribute to the dis-
persive and absorptive parts of the amplitude via nonlocal
insertions, as well as operators of mass dimension higher
than six [1].
The normalization factor 1=ðλ�uÞ2 in Eq. (2) ensures that

the resulting expression of ϵK in Eq. (1) is phase-con-
vention independent if one accordingly extracts the factor
1=λ�u from the jΔS ¼ 1j Hamiltonian which contributes to
Γ12 via a double insertion. It is evident in this decom-
position that C1 does not contribute to ϵK. Moreover, the
splitting into the real and imaginary part in Eq. (2) is
unique. Explicitly, we have J ¼ ImðVusVcbV�

ubV
�
csÞ and

f1 ¼ jλuj4 þ…, where the ellipsis denotes real terms that
are suppressed by powers of the Wolfenstein parameter λ.
By contrast, the splitting of the imaginary part among f2

and f3 is not unique. The choice f2 ¼ 2Reðλtλ�uÞ and f3 ¼
jλuj2 is particularly convenient in the particle data group
(PDG) phase convention. It maps Eq. (2) to the Lagrangian
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LΔS¼2
f¼3 ¼ −

G2
FM

2
W

4π2
½λ2uC uu

S2ðμÞ þ λ2tC
tt
S2ðμÞ

þ λuλtC
ut
S2ðμÞ�QS2 þ H:c:þ…; ð4Þ

via the relations C uu
S2 ≡ C1, C tt

S2 ≡ C2, and C ut
S2 ≡ C3, which

are obtained by applying CKM unitarity and are valid in the
PDG phase convention. This form of the effective
Lagrangian, where the coefficient of C uu

S2 is real and thus
does not contribute to ϵK , has been suggested in Ref. [2] as
a better way to compute the matrix elements on the lattice in
the four-flavor theory, and it was speculated that also the
perturbative part may then converge better (see also
Refs. [3,4]). Above, we showed that this minimal form
is essentially dictated by CKM unitarity; we will see below
that, indeed, both C2 and C3 (as opposed to C1) have a
perfectly convergent perturbative expansion. This can be
understood qualitatively by noting that C2 and C3 induce
CP violation and thus require the presence of all three
quark generations, while C1 is dominated by low-energy
degrees of freedom. See also Ref. [2] for an argument at the
amplitude level.
Traditionally, however, the effective Lagrangian has

been given in a different form [5,6],

LΔS¼2
f¼3 ¼ −

G2
FM

2
W

4π2
½λ2cCcc

S2ðμÞ þ λ2t Ctt
S2ðμÞ

þ λcλtCct
S2ðμÞ�QS2 þ H:c:þ…; ð5Þ

which in the PDG phase conventions can be obtained from
Eq. (2) via the relations Ccc

S2 ≡ C1, Cct
S2 ≡ 2C1 − C 3, and

Ctt
S2 ≡ C1 þ C2 − C3. Here C1 artificially enters all three

coefficients, which then all contribute to ϵK . This is
unfortunate because the perturbative expansion of C1
exhibits bad convergence, as shown in Ref. [7]. Trading
the short distance uncertainty in Ccc

S2 for the long distance
uncertainty in the theory prediction of ReðM12Þ cannot
reduce the uncertainty—see Ref. [8], where only the
uncertainty from the two-pion contribution was considered.
Clearly, Eq. (4) can be directly obtained from Eq. (2) by

the replacement λu ¼ −λc − λt. We will refer to Eq. (5) as
“c − t unitarity” and to Eq. (4) as “u − t unitarity.”
It is customary to define the renormalization-scale-invariant
(RI) Wilson coefficients Ĉij

S2 ≡ Cij
S2ðμÞbðμÞ, ij ¼ cc; ct; tt,

where the scale factor bðμÞ is defined, for instance, in
Refs. [6,9]. QCD corrections are then parametrized by the
factors ηtt, ηct, and ηcc, defined in terms of the Inami-Lim
functions Sðxi; xjÞ (see Ref. [10]) by Ĉtt

S2 ¼ ηttSðxtÞ,
Ĉct
S2 ¼ 2ηctSðxc; xtÞ, and Ĉcc

S2 ¼ ηccSðxcÞ. Here, we defined
the mass ratios xi ≡miðmiÞ2=M2

W with miðmiÞ denoting
the RI MS mass. ηtt is known at next-to-leading-
logarithmic (NLL) order in QCD, ηtt ¼ 0.5765ð65Þ [11],
while the other two are known at next-to-next-to-leading-
logarithmic (NNLL) order, ηct ¼ 0.496ð47Þ [9] and ηcc ¼
1.87ð76Þ [7].

In the same way, we define the RI Wilson coefficients
and the QCD correction factors for the Lagrangian in
Eq. (4), namely, Ĉ tt

S2 ¼ ηttSttðxc; xtÞ and Ĉ ut
S2 ¼

2ηutSutðxc; xtÞ. Using Eqs. (4) and (5) and the unitarity
relation λc ¼ −λu − λt, it is readily seen that the modified
Inami-Lim functions are given by Sutðxc; xtÞ ¼ SðxcÞ −
Sðxc; xtÞ and Sttðxc; xtÞ ¼ SðxtÞ þ SðxcÞ − 2Sðxc; xtÞ. The
latter relation implies that ηtt coincides in u − t and c − t
unitarity up to tiny corrections of orderOðm2

c=M2
WÞ ∼ 10−4,

which we neglect, writing Sttðxc; xtÞ ¼ SttðxtÞ. In what
follows, we show that ηut ¼ 0.402ð5Þ at NNLL with an
order-of-magnitude smaller uncertainty than ηct and ηcc.
Analytic results.—In this section we will show that all

ingredients for the NNLL analysis with manifest CKM
unitarity of the charm contribution to ϵK are available in the
literature. To establish the requisite relations, we display the
effective five- and four-flavor Lagrangian using both the
traditional c-t unitarity, giving [6,9]

Leff
f¼4;5

¼ −
4GFffiffiffi

2
p

� X
k;l¼u;c

V�
ksVldðCþQklþ þ C−Qkl

− Þ − λt
X
i¼3;6

CiQi

�

−
G2

FM
2
W

4π2
λ2t CS2QS2 − 8G2

FλcλtC̃7Q̃7 þ H:c:; ð6Þ

and u-t unitarity, giving

Leff
f¼4;5

¼−
4GFffiffiffi

2
p

� X
k;l¼u;c

V�
ksVldðCþQklþ þC −Qkl

− Þ− λt
X
i¼3;6

C iQi

�

−
G2

FM
2
W

4π2
λ2tC S2QS2 − 8G2

Fðλuλtþ λ2t ÞC̃ 7Q̃7þH:c: ð7Þ

The Wilson coefficients in Eqs. (7) and (6) are related via

C i ¼ Ci; C S2 ¼ CS2; C̃ 7 ¼ −C̃7; ð8Þ

where i ¼ þ;−; 3;…; 6. Here, Q̃7 ≡m2
c=g2sQS2, with gs as

the strong coupling constant, while the remaining operators
(current-current and penguin operators) are defined in
Ref. [9]. The initial conditions for all the Ci Wilson
coefficients and C̃7, up to next-to-next-to-leading order
(NNLO), can be found in Refs. [9,11–13].
It is evident that the renormalization-group evolution of

the coefficients C i and Ci, as well as of C S2 and CS2, is
identical. We now show that also the mixing of the C i into
C̃7 via double insertions of dimension-six operators can be
obtained from results available in the literature. To this end
we define the following short-hand notation for the relevant
jΔS ¼ 2j matrix elements of double insertions of local
operators OA and OB,
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hOA;OBi≡ i2

2!

Z
d4xd4yhTfOAðxÞOBðyÞgi: ð9Þ

With the Lagrangian in Eq. (6) and using
ðV�

csVudÞðV�
usVcdÞ ¼ −λ2c − λcλt, the anomalous dimen-

sions for the mixing of two C is into C̃7 can then be
obtained from the divergent part of the amplitude

MΔS¼2
double insertionsjdiv

∝ λ2t ðhQP;QPiþhQuu;Quuiþ2hQP;QuuiÞjdiv
−λcλtð2hQP;Qcc−QuuiþhQcc;Qcci−hQuu;QuuiÞjdiv

¼ λ2t ðhQP;QPiþhQcc;Qcciþ2hQP;QcciÞjdiv
þλuλtð2hQP;Qcc−QuuiþhQcc;Qcci−hQuu;QuuiÞjdiv:

ð10Þ

We introduced the short-hand notations QP ≡P
6
i¼3 C iQi

and Qqq0 ≡P
i¼þ;− C iQ

qq0
i . In the first equality we utilized

the observation that the divergence of the linear combina-
tion of amplitudes proportional to λ2c vanishes [14],

ðhQcc −Quu;Qcc −Quui − 2hQuc;QcuiÞjdiv ¼ 0: ð11Þ

In the second equality we used, in addition, the unitarity
relation λc ¼ −λu − λt. We see that the divergent parts of
the amplitudes proportional to λcλt and λuλt are the same
up to a sign. Therefore, the corresponding anomalous
dimensions can be extracted from existing literature. In
the notation of Ref. [9] we have γ̃ðutÞ�;7 ¼ −γ̃ðctÞ�;7 , where the
superscripts “ut” and “ct” denote the results in u − t
and c − t unitarity, respectively. All other contributing
anomalous dimensions remain unchanged.
Note that in the second equality in Eq. (10), the

amplitudes proportional to λ2t involve the charm-flavored
current-current operators. This is related to the appearance
of an initial condition of the operator Q̃7 at the weak scale
proportional to λ2t . This charm-quark contribution to C tt

S2
will be neglected in this work, as discussed above. In this
approximation, C tt

S2 is identical to Ctt
S2 and can be directly

taken from the literature [11].
Also the matching of the four- onto the three-flavor

effective Lagrangian at μc changes in a simple way. Picking
the coefficient of λuλt, the matching of the Lagrangian in
Eq. (7) onto the one in Eq. (4) yields the condition

X
i;j¼þ;−

C iðμcÞC jðμcÞð2hQcc
i ; Qcc

j i

− 2hQuc
i ; Qcu

j i − 2hQuu
i ; Qcc

j iÞðμcÞ

þ
X6
i¼3

X
j¼þ;−

C iðμcÞC jðμcÞ2hQi;Qcc
j −Quu

j iðμcÞ

þ C̃ 7ðμcÞhQ̃7iðμcÞ ¼
1

32π2
C ut

S2ðμcÞhQS2iðμcÞ: ð12Þ

Alternatively, selecting the coefficient of λcλt, the matching
of the Lagrangian in Eq. (6) onto the one in Eq. (5) yields
the condition

X
i;j¼þ;−

CiðμcÞCjðμcÞð2hQuu
i ; Quu

j i

− 2hQuc
i ; Qcu

j i − 2hQuu
i ; Qcc

j iÞðμcÞ

þ
X6
i¼3

X
j¼þ;−

CiðμcÞCjðμcÞ2hQi;Quu
j −Qcc

j iðμcÞ

þ C̃7ðμcÞhQ̃7iðμcÞ ¼
1

32π2
Cct
S2ðμcÞhQS2iðμcÞ: ð13Þ

and for the coefficient of λ2c yields the condition

X
i;j¼þ;−

CiðμcÞCjðμcÞðhQcc
i −Quu

i ; Qcc
j −Quu

j i

− 2hQuc
i ; Qcu

j iÞðμcÞ ¼
1

32π2
Ccc
S2ðμcÞhQS2iðμcÞ: ð14Þ

Recalling Eq. (8), we see that C ut
S2 ¼ 2Ccc

S2 − Cct
S2, hence we

can extract also the matching conditions from the literature.
In order to provide the explicit expressions, we para-

metrize the operator matrix elements as

hQ̃7i ¼ r7hQ̃7ið0Þ; hQS2i ¼ rS2hQS2ið0Þ;

hQiQjiqq0 ðμcÞ ¼
1

32π2
m2

cðμcÞ
M2

W
rqq

0
ij;S2hQS2ið0Þ: ð15Þ

Here, the superscripts qq0 ¼ ut; ct; cc denote the specific
flavor structures appearing in the double insertions in
Eqs. (12)–(14), respectively. The matching contributions
are then given in terms of the literature results by
rutij;S2 ¼ 2rccij;S2 − rctij;S2. It is interesting to note that, due
to the presence of a large logarithm logðmc=MWÞ in the
function Sutðxc; xtÞ, only the next-to-leading order result
for ηcc of Ref. [15] is required. The remaining NNLO
results can be found in Refs. [6,9].
Numerics.—In the previous section, we extracted all the

necessary quantities to evaluate the λ2t and λuλt contribu-
tions to ϵK at NLL and NNLL accuracy, respectively. Here,
we discuss the residual theory uncertainties in u − t
unitarity and compare them to the traditional approach
of c − t unitarity. To estimate the uncertainty from
missing, higher-order perturbative corrections we vary the
unphysical thresholds μt, μb, and μc in the ranges
40 GeV ≤ μt ≤ 320 GeV, 2.5 GeV ≤ μb ≤ 10 GeV, and
1 GeV ≤ μc ≤ 2 GeV. When varying one scale we keep
the other two scales fixed at the values of the RI mass of the
fermions, μi ¼ miðmiÞ with i ¼ t, b, c. The central values
for the η parameters are obtained as the average between the
lowest and highest value of the three scale variations, and
their scale uncertainty as half the difference of the two
values. The leading, but small, parametric uncertainties of
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αs and mc are obtained by varying the parameters at their
respective 1σ ranges. We find

ηNLLtt ¼ 0.55ð1� 4.2%scales � 0.1%αsÞ;
ηNNLLut ¼ 0.402ð1� 1.3%scales � 0.2%αs � 0.2%mc

Þ: ð16Þ

Apart from the tiny correction ofOðm2
c=M2

WÞ ∼ 10−4, ηtt
is not affected by the different choice of CKM unitarity.
The difference in the scale uncertainty with respect to
Ref. [11] is mainly due to the larger range of scale variation
chosen here. By contrast, the residual scale uncertainty of
ηut is significantly less than the corresponding one in ηct
and ηct in c-t unitarity. To illustrate this, we show in Fig. 1
the RI invariant Wilson coefficients Ĉ ut and Ĉct as a
function of the unphysical thresholds μt (left two panels)
and μc (right two panels).
To obtain the standard-model prediction for ϵK we

employ the Wolfenstein parametrization [16] of the
CKM factors in Eq. (4). In the leading approxima-
tion we find Imðλ2t Þ ¼ −2λ10A4η̄ð1 − ρ̄Þ þOðλ12Þ and
ImðλuλtÞ ¼ λ6A2η̄þOðλ10Þ. Numerically, the neglected
terms amount to subpermil effects and can be safely
neglected. Therefore, we can use the phenomenological
expression (cf. Refs. [5,17,18])

jϵKj ¼ κϵCϵB̂KjVcbj2λ2η̄
× ½jVcbj2ð1 − ρ̄ÞηttSttðxtÞ − ηutSutðxc; xtÞ�; ð17Þ

where Cϵ ¼ ðG2
FF

2
KMK0M2

WÞ=ð6
ffiffiffi
2

p
π2ΔMKÞ. We write

η̄ ¼ Rt sin β and 1 − ρ̄ ¼ Rt cos β, with Rt ≈ ðξs=λÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBs

=MBd

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔMd=ΔMs

p
. Here, ξs ¼ ðFBs

ffiffiffiffiffi
B̂s

p
Þ=

ðFBd

ffiffiffiffiffiffi
B̂d

p
Þ ¼ 1.206ð17Þ is a ratio of B-meson decay

constants and bag factors that is computed on the lattice
[19]. The kaon bag parameter is given by B̂K ¼ 0.7625ð97Þ
[19]. The phenomenological parameter κϵ ¼ 0.94ð2Þ [18]

comprises long-distance contributions not included in BK .
As input for the top-quark mass we use the MS mass
mtðmtÞ ¼ 163.48ð86Þ GeV. We obtain it by converting
the pole mass Mt ¼ 173.1ð9Þ GeV [16] to MS at three-
loop accuracy using RUNDEC [20]. All remaining
numerical input is taken from Ref. [16], in particular the
CKM input used is λ ¼ 0.2243ð5Þ, jVcbj ¼ 0.0422ð8Þ,
and sin 2β ¼ 0.691ð17Þ.
Using the η values in Eq. (16) and adding errors in

quadrature we find the standard-model prediction

jϵKj ¼ ð2.161� 0.140Vcb
� 0.061param � 0.064ηtt

� 0.008ηut � 0.027B̂K
� 0.052ξs � 0.046κϵÞ × 10−3;

¼ ð2.161� 0.153paramþVcb

� 0.076nonpert � 0.065pertÞ × 10−3;

¼ 2.16ð18Þ × 10−3: ð18Þ

We see that the perturbative uncertainty (∼3.0%) is now of
the same order as the combined nonperturbative one
(∼3.5%), while the dominant uncertainties originate from
the parametric, experimental uncertainties (∼7.1%).
Moreover, the dominant perturbative uncertainty no longer
originates from ηct but from the top-quark contribution, ηtt.
Note that using the exclusive determination jVcb;exclj ¼
0.0403ð8Þ [21] and the lattice value κϵ ¼ 0.923ð6Þ [22] we
find ϵK ¼ 1.81ð14Þ × 10−3 in tension with the experimen-
tal measurement [23].
Discussion and conclusions.—In this Letter, we showed

that a manifest implementation of CKM unitarity in the
effective jΔS ¼ 2j Hamiltonian dramatically improves the
convergence behavior of the perturbative series for its
imaginary part, by removing a spurious long-distance
charm-quark contribution. In this way, and using only
known results in the literature, we reduced the residual
uncertainty of the short-distance charm-quark contribution

FIG. 1. Comparison of Wilson coefficients in u-t (first and third plot) and c-t unitarity (second and fourth plot). Shown is the residual
renormalization-scale dependence of the RI Wilson coefficients as a proxy for their theory uncertainty. In the two plots on the left the
five-flavor threshold, μt, is varied, while in the two on the right the three-flavor threshold, μc, is varied (see text for further details).
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to the weak Hamiltonian by more than an order of
magnitude. The perturbative uncertainty is now dominated
by the missing NNLO corrections to the top-quark con-
tribution, as well as partially known electroweak correc-
tions at the percent level (see Refs. [24–26]). The
calculation of these corrections [27] has the potential to
bring the perturbative uncertainty of ϵK down to the percent
level, motivating a renewed effort to compute long-distance
effects using lattice QCD. Our analysis reinforces the role
of ϵK in global CKM fits as the most important test of the
standard model among the kaon flavor-changing neutral-
current processes.
By contrast, the real part of the jΔS ¼ 2j Hamiltonian is

dominated by up- and charm-quark contributions, and their
convergence is not improved. Hence, the calculation of
these contributions is a genuine task for lattice QCD, to
which a significant effort is devoted [2,28,29]. However,
our results have the potential to supply useful cross checks
for part of these calculations: by performing the matching
to the hadronic matrix elements for ϵK above the charm-
quark threshold we can obtain a prediction of these matrix
elements that can be directly compared to a future lattice
calculation. This could shed additional light onto the lattice
calculation of the kaon mass difference.
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