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Quantum compiling, a process that decomposes the quantum algorithm into a series of hardware-
compatible commands or elementary gates, is of fundamental importance for quantum computing. We
introduce an efficient algorithm based on deep reinforcement learning that compiles an arbitrary single-
qubit gate into a sequence of elementary gates from a finite universal set. It generates near-optimal gate
sequences with given accuracy and is generally applicable to various scenarios, independent of the
hardware-feasible universal set and free from using ancillary qubits. For concreteness, we apply this
algorithm to the case of topological compiling of Fibonacci anyons and obtain near-optimal braiding
sequences for arbitrary single-qubit unitaries. Our algorithm may carry over to other challenging quantum
discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum
physics.
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To efficiently decompose unitaries into a sequence of
elementary hardware-compatible quantum gates as short as
possible is a crucial problem in a variety of quantum-
information-processing tasks, such as quantum computing
[1] and quantum digital simulations [2]. This problem
becomes especially relevant for the noisy intermediate-
scale quantum devices [3], where the depth of the quantum
circuits might be limited due to the inaccuracy of the
possible elementary gates and quantum decoherence. A
number of notable algorithms have been proposed to
compile single-qubit unitaries [4–17]. For instance, the
Solovay-Kitaev algorithm runs in O½log2.71ð1=ϵÞ� time and
can output a sequence of O½log3.97ð1=ϵÞ� elementary gates
that approximate the targeted unitary to precision ϵ [1,4].
Other algorithms either exploit the specific structure of the
Cliffordþ T gate set [12–16] or utilize ancillary qubits
[5,6] to further reduce the running time and length of the
desired gate sequences. Each of these algorithms bears its
pros and cons, and the choice depends on the specific
problem. Here, inspired by the similarity between quantum
compiling and solving Rubik’s cube (see Table I), we
introduce a novel algorithm based on deep reinforcement
learning, which compiles single-qubit unitaries efficiently
and is generally applicable to different scenarios (see Fig. 1
for an illustration).
Machine learning, especially deep learning, has achieved

dramatic success in a broad range of artificial intelligence
applications, ranging from image and speech recognition to
self-driving cars [24,25]. The interplay between machine
learning and quantum physics has led to an emergent

research frontier of quantum machine learning, which has
attracted tremendous attention [26–29]. Quantum learning
algorithms with potential exponential advantages have been
proposed, and machine learning techniques have also been
invoked in various applications in quantum physics, includ-
ing representing quantum many-body states [30,31], quan-
tum state tomography [32,33], nonlocality detection [34],
and learning phases of matter [35–45], etc. In this work, we
introduce deep reinforcement learning [46], which has been
exploited to build AlphaGo [47] (a computer program of
Go that defeated the world’s best players) and more
recently DeepCubeA that solves the Rubik’s cube—a
classic combinatorial puzzle that posed unique challenges
for artificial intelligence [48] to the task of quantum
compiling. We observe that compiling unitaries to a
sequence of elementary gates is analogous to finding a
sequence of basic moves that solves the Rubik’s cube (see
Table I). Since unitaries are invertible, finding a gate
sequence approximating a target unitary U is equivalent
to finding a gate sequence that “restores” U back to
identity. In this way, the identity matrix becomes our target
state (corresponding to the solved cube), and the unitary U
is the initial state (corresponding to a scrambled cube).
Both problems have several discretized, noncommuting
operations; the goal of both problems is to find the shortest
sequences available; for a state seemingly close to the
targeted one, the actual number of required operations may
still be surprisingly large. Similar to the fact that
DeepCubeA can solve an arbitrarily scrambled cube in a
near-optimal fashion [48], our algorithm can efficiently
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compile an arbitrary unitary into a near-optimal sequence
of elementary gates.
The algorithm.—First, we introduce our general algo-

rithm; later, we will apply it to the case of topological
compiling of Fibonacci anyons as a concrete example. In
previous reinforcement learning algorithms such as deep Q
learning [47,49], a function approximator such as a deep
neural network (DNN) represents a reward function defined
on all states, which dictates the strategy to maximize the
reward and performs the actions step by step. Then, the
resulting experiences are added to the regression to
optimize the DNN further, and so on and so forth.
However, when such an algorithm is directly applied to
bring an arbitrary quantum state to a specific target, it faces
immediate failure: With a large state space, discretized
actions at each step, a single target, and giving the reward
only extremely close to the target, the reward may never be

received at all, making it almost impossible to train a valid
reward function.
To resolve this issue, we start from the target state instead

and perform backward search operations, similar to the
value iteration algorithm [50]. The cost-to-go function JðsÞ
is defined as the minimum cost for a state s to reach the
target state within the designated precision, represented
approximately by a DNN. During training, we update the
cost-to-go function according to [48]

J0ðsÞ ¼ minafgðs; aÞ þ J½Sðs; aÞ�g; ð1Þ

where Sðs; aÞ is the state obtained after applying the action
a to the state s and gðs; aÞ is the corresponding cost.
Jðs0Þ ¼ 0 for the target state s0, and JðsÞ for other states
can be computed with Eq. (1) successively. In practice,
Eq. (1) uses the DNN itself for target updating, which may
lead to instabilities. Therefore, we use two neural networks
during training [48,49]: a policy network that is constantly
being trained and a target network that estimates of the
target value J0ðsÞ for training and updates to the policy
network only periodically.
To enhance the search performance and derive the

shortest sequence possible, we further complement the
cost-to-go function JðsÞ with a weighted A� search
algorithm [51,52]. We define an evaluation function fðsÞ
from the initial state si to the target state s0 via an
intermediate state s:

fðsÞ ¼ λGðsÞ þ JðsÞ; ð2Þ

where GðsÞ is the actual cost from the initial state si to the
current state s:λ ∈ ½0; 1� is a weighting factor, and smaller λ
reduces the number of states evaluated and alleviates the
difficulty of a large state space at the expense of potentially
longer paths [52]. During the search, we start with a set of
the intermediate states fsg with only the initial state si;
iteratively, we pick the state s in fsg with the minimum

TABLE I. Comparison between quantum compiling and solving the Rubik’s cube shows that these two seemingly
irrelevant problems have a lot in common. The shown cube has only two misplaced cubelets, yet it takes at least 16
steps [23] to solve. Similarly, the shown quantum state jψi is close to the target state j0i, but with a discretized
universal gate set, it may still take many steps to transform into j0i.

System

Initial state The unitary to be approximated The scrambled cube
Target state The identity matrix The solved cube
Basic move A gate from the universal set Rotation of one face

FIG. 1. A schematic illustration of the algorithm: During the
search, we start from the initial state si ¼ jψ ii, then iteratively
pick the state with the minimum evaluation function fðsÞ, and
evaluate all its successors with the DNN until we reach the target
state (see [18]).
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fðsÞ and replace it with its successors Sðs; aÞ (if they are
not already in or have not previously been in fsg)—see
Fig. 1; once a state with a distance less than a designated
termination accuracy ϵT from the target state s0 is present in
fsg, we have obtained the desired sequence between si and
s0 within the desired accuracy threshold.
We also make several additional modifications to the

weighted A� search algorithm to better fit our quantum
compiling problem. First, we introduce a maximum search-
ing depth Dmax, beyond which the search terminates and
returns the best state found so far. This cutoff resolves the
possible nonconvergence induced by the search along a
discrete graph on a continuous state space. Second, it is
natural for the DNN to generalize the cost-to-go function
JðsÞ to states never present in training. Sometimes, such a
state is mistaken for a small JðsÞ [e.g., JðsÞ ∼ 1.5],
although its actual distance from the target state is
considerably farther away, and the weighted A� searches
are stuck there. To handle this problem, we introduce
a decimal-penalty term to the evaluation function
fðsÞ ¼ λGðsÞ þ JðsÞ þ dðsÞ:

dðsÞ ¼ γ
fJðsÞ − round½JðsÞ�g2

JðsÞ ; ð3Þ

where γ is a constant tuning parameter. dðsÞ put preferences
on states used to train the DNN with near-integer JðsÞ over
states whose JðsÞ values containing decimal parts and are
likely estimations and interpolations.
Without loss of generality, we apply our algorithm to

topological compiling with Fibonacci anyons, which are
quasiparticle excitations of topological states that obey
non-Abelian braiding statistics [53]. Unlike Majorana
bound states [54], whose braiding gives only elementary
gates in the Clifford group unless additional multistep
protocols are incorporated [55], Fibonacci anyons are the
simplest non-Abelian quasiparticles that enable universal
topological quantum computation [56,57] by braiding
alone [58]. They are theoretically predicted to exist in
the ν ¼ 12=5 fractional quantum Hall liquid [59] and
rotating Bose condensates [60], as well as quantum spin
systems [61,62]. The only nontrivial fusion rule for
Fibonacci anyons reads τ × τ ¼ Iþ τ, where I and τ
denote the vacuum and the Fibonacci anyon, respectively.
We encode logical qubits into triplets of anyons with total
topological charge one [58]: j0Li ¼ j½ð•; •ÞI; •�τi and
j1Li ¼ j½ð•; •Þτ; •�τi, and neglect the noncomputational state
jNCi ¼ j½ð•; •Þτ; •�Ii, since we mainly focus on braidings
within a single logical qubit and the leakage error is not
relevant in this case. Based on this encoding scheme, the
two elementary single-qubit gates correspond to the braid-
ings of two Fibonacci anyons are σ1 and σ2 as shown in
Fig. 2(a), which form a universal set for single-qubit
unitaries.

In the literature, topological compiling with Fibonacci
anyons has been extensively studied, and different
algorithms have been proposed [63–69]. Notable examples
include the quantum hashing algorithm [67], which runs
in O½logð1=ϵÞ� time and outputs a sequence of length
O½log2ð1=ϵÞ�, and the probabilistically polynomial algo-
rithm [68], which runs in O½polylogð1=ϵÞ� time on average
and outputs an asymptotically depth-optimal sequence of
length O½logð1=ϵÞ�. Here we apply the introduced
reinforcement-learning algorithm. To measure the accuracy
of the output sequence, we use the quaternion distance [70]:
dðqb; qtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − hqb; qti2
p

, where qb and qt are the unit
quaternions corresponding to the unitary from the braiding
sequence and the target unitary, respectively, and hqb; qti
denotes their inner product. We employ a DNN with the
state s as the input, two fully connected hidden layers, and
six residue blocks [71], followed by one output neuron
representing the approximate cost-to-go function JðsÞ. We
train this DNN via PyTorch routines with randomly
sampled sequences whose lengths are shorter than a given
constant [18]. The training process takes about two days
running on an NVIDIA TITAN V GPU. Without loss of
generality, we set gðs; aÞ ¼ 1 for all gates in Eq. (1). In
situations where certain elementary gates are harder to
implement or the cost is state dependent, we can simply
adjust gðs; aÞ and retrain the DNN. The optimal values for
parameters λ, γ in the evaluation function fðsÞ and the
maximum searching depth Dmax are determined by a grid

FIG. 2. (a) The two elementary gates by braiding Fibonacci
anyons. Logical qubits are encoded into triplets of anyons
(enclosed in the ovals), and time flows from left to right. Here,
η ¼ eiπ=5 and ϕ ¼ ð ffiffiffi

5
p þ 1Þ=2 [53]. (b) The approximate braid-

ing sequences obtained by the reinforcement-learning-based
algorithm for the Hadamard gate (H), the Pauli σx gate (X),
and the Pauli σy gate (Y), respectively. The quaternion distances
between the braiding sequences and their corresponding targets
are 4.4 × 10−3, 2.4 × 10−3, and 2.3 × 10−3, respectively. After
the DNN is trained, the algorithm takes only a couple of seconds
to output each of the sequences.
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search (see [18]). Unless noted otherwise, we set λ ¼ 1,
γ ¼ 400, and Dmax ¼ 100.
In Fig. 2(b), we show the braiding sequences derived by

our reinforcement-learning algorithm to approximate the
Hadamard gate, the Pauli σx gate, and the Pauli σy gate (up
to a trivial global phase). Compared to the brute-force
searches in previous works [63,65,66], we have achieved
comparable accuracy and sequence length but with much
less computational time. Also, we randomly generate 1000
unitaries in SUð2Þ and use the reinforcement-learning
algorithm to generate their corresponding braiding sequen-
ces. The algorithm can efficiently output the desired
sequence for any of these unitaries with a running time
of less than a couple of seconds on a single GPU.
The typical average length of these sequences is ∼24.79,
and the average precision is ∼3.1 × 10−3 (see [18]), on par
with the results from the brute-force search. To compare our
algorithm with the Solovay-Kitaev algorithm, we apply the
latter to the same 1000 unitaries and find the obtained
braiding sequences are typically 10 times longer.
To further analyze the time complexity and the length

complexity as the scalings of the precision inverse 1=ϵ, we
explicitly control the approximation accuracy by terminat-
ing the weighted A� search once a state with a distance less
than ϵT from the target state s0 is found. To ensure that most
instances reach the desired accuracy ϵT, here we set the
maximum searching depth to a larger value Dmax ¼ 1000.
Figure 3(a) shows the averaged actual accuracy ϵ̄ as a
function of ϵT . When ϵT is large, it is easier to find a
sequence with a precision smaller than ϵT , and the search
terminates before hitting the depth limit Dmax; thus, ϵ̄ is
noticeably smaller than ϵT . As ϵT becomes smaller, the
constraint of limited searching depth becomes dominant,
and more and more target unitaries may require the
weighted A� searches with a depth larger than the given
Dmax ¼ 1000 to attain an accuracy smaller than ϵT , as
shown in Fig. 3(b). We plot the averaged searching
depth D̄ as a function of ϵ̄ in Fig. 3(c). From this figure,
when ϵ̄ is large, D̄ scales logarithmically with 1=ϵ̄:
D̄ ∼ 6.56 logð1=ϵ̄Þ, leading to a nearly linear time complex-
ity—the search time scales as t̄ ∼ 0.274 logð1=ϵ̄Þ; see
Fig. 3(d). As ϵ̄ decreases further, however, the searching
depth and time start to increase dramatically. This is likely
due to the relatively limited sequence length (no larger than
D ∼ 40) during the training; thus, the DNN has not yet
learned enough information for approximating unitaries
with higher precision. One way to improve the performance
of the algorithm for smaller ϵ̄ is to increase Dmax. Also, we
plot the average length L̄ of the braiding sequences
obtained by different algorithms as a function of ϵ̄ in
Fig. 4. From this figure, L̄ scales as L̄ ∼ log1.6ð1=ϵ̄Þ for our
reinforcement-learning algorithm, which is slightly worse
than the scaling for the brute-force approach but notably
better than that for the Solovay-Kitaev algorithm. We note
that one may further improve the performance of the

reinforcement-learning algorithm in the above example,
through increasing the size of the DNN, the length of the
braiding sequences in the training set, or the searching
depth when generating sequences, etc. In fact, we used a
much smaller DNN in this work than that for AlphaGo [47]
and only a single GPU.
The reinforcement learning algorithm can also compile

two- or multiqubit gates, with enlarged state space (target
unitary matrices) and action space (gates in the universal
set) accordingly, which demands a larger DNN and,
inevitably, increases the cost for its training. For simplicity,
here we consider the compiling of arbitrary two-qubit gates
for demonstration. The action space involves braiding six
Fibonacci anyons within the 87-dimensional Hilbert space,
much larger than the case for single-qubit gates [63].
Alternatively, we can decompose an arbitrary two-qubit
gate into seven single-qubit gates and three controlled-NOT
(CNOT) gates analytically and optimally [72]. In turn, the
CNOT gate can be decomposed into a single-qubit rotation
and a controlled-iX gate, whose braiding sequence is
available [63,65]. Finally, our reinforcement-learning
algorithm can compile the component single-qubit uni-
taries. Indeed, this buildup decomposes arbitrary two-qubit
gates into braiding sequences with notably better perfor-
mance than the Solovay-Kitaev algorithm [18].

FIG. 3. (a) The averaged actual accuracy (ϵ̄) versus the
termination accuracy (ϵT). Since the distribution of the accuracy
has a long tail, we employ the typical average ϵ̄ ¼ expðlog ϵiÞ.
Here, the weighted A� search terminates once a state with an
accuracy smaller than ϵT is found or the searching depth exceeds
Dmax ¼ 1000. (b) The ratio (R) of target unitaries that require a
depth larger than Dmax to attain an accuracy smaller than ϵT . In
general, we need longer sequences for higher accuracy (c) The
average searching depth (D̄) as a function of the average actual
accuracy (ϵ̄). The red dotted line is a logarithmic fitting of D̄ into
logð1=ϵ̄Þ. (d) The average searching time t̄ versus the average
actual accuracy ϵ̄. The red dotted line is a logarithmic fitting of t̄
into logð1=ϵ̄Þ. In these figures, each data point represents an
average on the solutions of 1000 random unitaries.
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Discussion and conclusion.—In experiments, it is
common that elementary gates cost differently, and reduc-
ing the use of the expensive ones in compiling is of crucial
importance for applications in quantum computing.
Notably, each elementary gate’s cost can be naturally
incorporated into our reinforcement-learning approach by
adjusting the cost function [gðs; aÞ in Eq. (1)]—another
striking advantage of the proposed approach over tradi-
tional algorithms. Moreover, our approach carries over
straightforwardly to other quantum control problems [73]
as well.
In summary, we have introduced a reinforcement-learn-

ing-based quantum compiling algorithm to decompose an
arbitrary unitary into a sequence of elementary gates from a
finite universal set. This algorithm uses no ancillary qubit
or group-theory relevance and is generally applicable to
various scenarios regardless of the choice of universal gate
sets. It generates near-optimal gate sequences that approxi-
mate arbitrary unitaries to given accuracy in an efficient
fashion. To illustrate how the algorithm works, we have
also applied it to topological compiling with Fibonacci
anyons. Our results build a new connection between
reinforcement learning and quantum compiling, which
would benefit future studies in both areas.

The source code for this work can be found in Ref. [74].
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