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Ultracold gases provide an unprecedented level of control for the investigation of soliton dynamics and
collisions. We present a scheme for deterministically preparing pairs of three-component solitons in a Bose-
Einstein condensate. Our method is based on local spin rotations which simultaneously imprint suitable
phase and density distributions. This enables us to observe striking collisional properties of the vector
degree of freedom which naturally arises for the coherent nature of the emerging multicomponent solitons.
We find that the solitonic properties in the quasi-one-dimensional system are quantitatively described by
the integrable repulsive three-component Manakov model.

DOI: 10.1103/PhysRevLett.125.170401

Solitons, nondispersive wave packets in nonlinear
systems, are realized in a broad variety of settings across
nature—from optics and classical fluids to plasmas and
ultracold atoms [1,2]. While an extensive effort has been
invested in the understanding of single-component systems,
the study of coupled multicomponent nonlinear models is
far less developed, especially in settings involving more
than two components. In the presence of well-defined
phase relations between the constituent fields the concept
of vector solitons arises and their internal degree of freedom
leads to striking interaction features [3].
There are different platforms for investigating solitonic

collisions, most notably nonlinear optics systems where
polarization shifts have been demonstrated [4–6].
Nowadays, the unprecedented level of control available
in ultracold atomic systems offers new perspectives. These
systems do not only provide a variable number of internal
states with long coherence times but also a wide variety of
methods for manipulating and detecting the constituent
fields. Single-component collisions have already been
studied in great detail [7–9]. Recently, this has been
extended to the experimental detection of two-component
[10] and magnetic solitons [11,12], as well as three-
component solitonic structures [13].
For our experiments on three-component solitons we

employ a quasi-one-dimensional Bose-Einstein condensate
(BEC) of 87Rb trapped in a homogeneous magnetic field.
We realize the different components with the magnetic
sublevels mF ¼ 0;�1 of the F ¼ 1 hyperfine manifold.
The soliton we are investigating is a coherent superposition
of allmF fields, wheremF ¼ 0 features a density minimum
accompanied by a phase jump. The bright components in
mF ¼ �1 feature density maxima at the same position. In
the nonlinear physics context, this type of excitation is
known as dark-bright-bright soliton [14]. The fixed phase

relation between the bright components allows defining the
associated polarization vector. This is a genuine feature for
solitonic excitations with at least two bright components
which we control and detect in our experiment.
To generate this type of nonlinear excitation, we use a

spatially localized spin rotation based on the vector Stark
shift [15] realized with a steerable laser beam (for details
see [16]). This coherently transfers atoms from the initial
mF ¼ 0 to the bright components [see Fig. 1(a)]. The
Gaussian beam profile with a root mean square (rms) radius
of approximately 4 μm leads to density distributions of
the magnetic substates via the corresponding position-
dependent Rabi coupling ΩðxÞ which is proportional to
the modulation amplitude of the vector Stark shift and thus
to the corresponding light intensity [15].
Simultaneously, a spatially dependent phase is imprinted

which is close to the phase structure of the vector soliton,
namely a phase step in the mF ¼ 0 field and constant
phases in mF ¼ �1. For this we use that a Rabi oscillation
of duration τ induces field amplitudes according to ψ0 ∝
cosðΩτÞ in mF ¼ 0. Thus, rotation angles Ωτ > π=2 in the
center of the light beam induce a region with flipped sign of
ψ0. In Fig. 1 we show the subsequent dynamics which is
probed via Stern-Gerlach absorption images. ForΩτ > π=2
we find indeed that a pair of solitons is formed [Fig. 1(b),
right column] while for shorter Rabi couplings the initial
density distribution disperses [Fig. 1(b), left column].
We confirm the preparation of three-component vector

solitons by comparing our experimental observations with
an appropriate analytical model. We expect our system to
be well described by a repulsive three-component Manakov
model with density interactions of equal coupling strength
between all components. Beyond density coupling, our
multicomponent 87Rb Bose gas features also spin inter-
actions, which lead to a small spin-dependent modification
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of the density interactions (less than one percent), and to
spin changing collisions redistributing the population
between the components (see [16] for details). We strongly
suppress the latter process by working in a regime of
positive quadratic Zeeman energy, more than 20 times
larger than the spin interaction energy (i.e., deep in the
polar phase [19]). The size of the solitons of ∼6 μm is
larger than the transverse extent of ∼4 μm of the atomic
cloud; therefore, a one-dimensional model is adequate to
describe our system.
For the three-component variant of the Manakov model,

it is well known that dark-bright-bright solitons exist for the

system subject to nonzero boundary conditions [20].
Recently, for solutions of the form

ψ�1ðxÞ ¼ c�1η sin α sech½κðx − x0Þ�;
ψ0ðxÞ ¼ eiφSfi cos αþ sin α tanh½κðx − x0Þ�g; ð1Þ

an inverse-scattering analysis has been developed in order
to predict the change of their characteristics upon collision
[22]. In Eq. (1) the indices label the differentmF states, c�1

the entries of the polarization vector c associated with the
bright soliton components, κ the inverse soliton width, x0 ¼
x̃0 þ vt the position of the soliton propagating with velocity
v, and φS a relative phase between mF ¼ 0 and mF ¼ �1.
The remaining quantities for our atomic system are given
by η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðℏ2κ2=mþmv2Þ=μ

p
and tan α ¼ ℏκ=ðmvÞ,

where m denotes the atomic mass and μ is the chemical
potential of the total background density (see [16]).

(a)

(b)

FIG. 2. Quantitative comparison with a repulsive three-com-
ponent Manakov vector soliton solution. (a) Experimentally
extracted density profiles (markers) of a single realization at t ¼
100 ms compared to the analytical prediction (solid and dashed
lines) of Eq. (1) with independently extracted parameters from the
experimental observations (see main text). The spreading of the
atomic absorption signal induced by the imaging setup is taken
into account by convolving the model densities with a Gaussian
with rms radius of 1.2 μm [16,21]. The inset shows the
experimentally extracted soliton positions (solid lines are linear
fits). (b) The total density of the three-component Manakov
soliton features a small depletion [solid line for parameters used
in (a)] which we confirm by taking the difference between the
total densities with and without solitons measured by omitting the
Stern-Gerlach separation of the components and averaging over
20 realizations. All error bars mark the 1 s.d. interval of the mean.

(a)

(b)

FIG. 1. Formation of three-component vector solitons. (a) An
amplitude-modulated steerable laser beam (green) is used to
implement local spin rotations in an elongated BEC (red) subject
to a homogeneous magnetic field B along the z direction. This
coherently transfers atoms from the initial state mF ¼ 0 (red disk)
tomF ¼ �1 (green arrows). (b) The upper panel shows absorption
images after Stern-Gerlach separation revealing the density
distributions of the three mF states after local spin rotations of
duration τ. For short Rabi coupling (τ ¼ 33 μs) the population is
transferred tomF ¼ �1; and for longer pulse duration (τ ¼ 65 μs)
the population is coherently transferred back to mF ¼ 0 in the
center of the laser beam, implying a sign change in ψ0. The
subsequent dynamics shown below (summed mF ¼ �1 densities
n�1) indicates the formation of a soliton pair as a result of the sign
change (right column). Each soliton consists of shape-preserving
bright components (mF ¼ �1) and a corresponding density
depletion in themF ¼ 0 component (see lower absorption image).
In contrast, without phase jump the initial density distribution
disperses (left column).
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We parametrize the soliton polarization

c ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Sz
p

e−iφL=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Sz

p
eþiφL=2

�
; ð2Þ

motivated by the collective pseudospin 1=2 representation of
the bright components, in terms of Sz ¼ ðNþ1 − N−1Þ=
ðNþ1 þ N−1Þ, with N�1 representing the atom numbers in
the corresponding bright components. The Larmor phase φL

is givenby the transversal spinSx þ iSy ¼ jS⊥jeiφL withSx∝R ðψ�
þ1ψ−1þc:c:Þdx and Sy∝

R ð−iψ�
þ1ψ−1þc:c:Þdx. In this

language the coherence is given by the length jSj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2z þ jS⊥j2

p
and is equal to 1 in the theoretical framework

of the model.
For comparison with the analytical model we independ-

ently determine the polarization parameters φL and Sz
where we estimate N�1 by summing over three times the
fitted rms width. The position x0 and the inverse width κ
are extracted as the mean from independent fits to the
mF ¼ �1 components. The velocity v is obtained from the
position assuming linear motion of the solitons [cf. inset of
Fig. 2(a)], and μ from the background density n (see [16]
for details). In Fig. 2(a) we compare the individual densities
n0;�1 ∝ jψ0;�1j2 with the solution Eq. (1) and find good
quantitative agreement. We attribute the remaining devia-
tions in amplitude and width of the mF ¼ 0 profile to the

filling up of the density minimum during time of flight for
spatially separating the hyperfine levels and imaging.
An additional feature of the multicomponent soliton is a

maximal depletion δn=n ¼ ℏ2κ2=ðmμÞ of the total density
relative to the background density n. For our parameters we
expect approximately 60 atoms to be missing in the total
number of particles. This is on the order of the atomic shot
noise of the total atom number over the size of the soliton.
To achieve this precision we image without Stern-Gerlach
separation and subtract total density profiles without
solitons, each averaged over 20 realizations [23]. The
result in Fig. 2(b) is close to the expectation and we
find a depletion of ∼100 atoms which corresponds to
δn=n ≈ 0.03 of the background density.
We now turn to the study of collisions, a defining

characteristic of solitons. For this we consecutively gen-
erate two soliton pairs by applying two separate local spin
rotations where the experimental control allows modifying
the soliton polarization. Here we tune the initial Larmor
phase difference Δφi

L ¼ φð2Þ
L − φð1Þ

L of the colliding sol-
itons by adjusting the relative phase of the amplitude
modulation of the laser beams [see Fig. 3(a)]. After
approximately t ≈ 260 ms the two central solitons collide
without significantly changing their shape. However, we
observe a strong variation of the outgoing soliton polari-
zation as a function of the initial polarization difference,
exemplified for three settings of Δφi

L shown in Fig. 3(b).
While for Δφi

L ≈ 180° the polarization is not altered, we

(a) (b)

FIG. 3. Collision of three-component vector solitons. (a) We generate two pairs of solitons by applying two local spin rotations. The
resulting evolution of the bright components n1 þ n−1, averaged over 6 realizations, is shown in the lower panel. Encircled numbers
label the solitons. (b) Detailed view of the collision area marked by the rectangle in (a) for three different relative Larmor phases

ΔφL ¼ φð2Þ
L − φð1Þ

L imprinted by corresponding phases of the laser beam modulation. The orientation of the pseudospin 1=2 in the x-y
plane is indicated by the green arrows. The color-coded density difference n1 − n−1 between the two bright components of the vector
soliton after collision reveals a strong dependence on the initial Δφi

L. The saturation of the color indicates the density n1 þ n−1. We
confirm that the shape of the solitons remains unaltered and that the polarization features a ΔφL-dependent change after the collision.
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observe a significant change of Sz for other angles. For the
cases shown the collision redistributes the populations in
mF ¼ �1 such that the outgoing solitons mainly contain
one dominant bright component (population ratio of
∼0.8=0.2).
For further characterization we apply a detection scheme

for simultaneous readout of orthogonal transversal projec-
tions of the pseudospin degree of freedom [24] with which
we access initial and final ΔφL as well as the transversal
spin length jS⊥j (see [16] for the readout sequence). This
allows the quantitative comparison of experimental data
and theoretical predictions. In Fig. 4 we show the experi-
mentally extracted polarization parameters Sz and relative
phase Δφf

L after collision as a function of the initial phase
difference Δφi

L. For the repulsive three-component
Manakov model the postcollision polarizations of soliton
1 and 2 are given by

cf1 ¼ χðci1 þ A12hci2jci1ici2Þ;
cf2 ¼ χðci2 þ A�

21hci1jci2ici1Þ; ð3Þ

where h·j·i denotes the complex inner product, with the
polarization vectors ci and cf before and after collision,
respectively. The normalization factor χ and the coupling
parameters Ajk depend on the velocities and widths of the
colliding solitons as well as on the background density (for
the theoretical analysis see [22], for the connection to our
experiment see [16]). The outgoing polarization can be
seen as a superposition of the transmitted part and an
admixture of the reflected part weighted with the overlap
between the two polarization vectors of the incoming
solitons. We calculate the parameters of Eq. (3) from the
experimental quantities and find good quantitative agree-
ment between experiment and analytical predictions (see
Fig. 4). The initial experimental asymmetries in the soliton
polarization, width, and velocity cause slight amplitude
differences in the postcollisional Sz which are also captured
by the theory. Our measurements reveal that the collisions
conserve the pseudospin length jSj [see inset Fig. 4(b)]
which confirms the coherence-preserving nature of the
collisions.
Summarizing, we present a novel method for controlled

generation of coherent multi-component solitons and verify
the key features of three-component vector-solitonic propa-
gation and interactions experimentally. We find quantitative
agreement with analytical predictions of collision-induced
polarization shifts in the repulsive three-component
Manakov model. The scalability of the technique provides
themeans for direct generation of solitonic lattices or random
soliton gases [25–28] with a spin degree of freedom.
Combined with the observed long lifetime of the solitons
the regime of multiple soliton collisions can be investigated.
Notably, the collisional properties can also bedescribedby an
attractive two-componentManakovmodel [22] for the bright
components. Thus our work paves the way for the study of
bright-soliton collisions in the robust environment of repul-
sive BECs. Combined with the decoupled spin degree of
freedom this leads to long coherence times—a new route to
quantum solitons entangled in the spin degree of freedom
after solitonic collision.
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(a)

(b)

FIG. 4. Quantitative comparison of the experimental soliton
polarization dynamics with the analytical solution. We compare
the measured polarization after collision (circles, averaged over
times t ¼ 320–400 ms) with the predictions using independently
determined model parameters (solid lines) for different Δφi

L
measured before collision. (a) Sz of both solitons (red and blue).
As a reference the dashed lines show the experimental Sz before
collision averaged over times t ¼ 40–220 ms and all measured
phases. We attribute the different amplitudes to the differences in
initial velocities, widths, and Sz of the two solitons. (b) The
measured Larmor phase difference Δφf

L after collision matches
the analytical solution. The inset shows the experimentally
measured pseudospin 1=2 length before [dashed line, averaged
as in (a)] and after (circles) collision, revealing the conservation
of coherence. The ticks on all x axes correspond to the same
values indicated at the bottom of (b) and all error bars indicate
1 s.d. interval of the mean.
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