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Xia-qing Shi ,1,2 Giordano Fausti,2 Hugues Chaté,2,3,4 Cesare Nardini,2,4 and Alexandre Solon 4

1Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
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We revisit motility-induced phase separation in two models of active particles interacting by pairwise
repulsion and uncover new qualitative features: the resulting dense phase contains gas bubbles distributed
algebraically up to a typically extremely large cutoff scale. At large enough system size and/or global
density, all the gas may be contained inside the bubbles, at which point the system is microphase separated
with a finite cutoff bubble scale. We further observe that the ordering is clearly anomalous, with different
dynamics for the coarsening of the dense phase and of the gas bubbles. This self-organized critical
phenomenology is reproduced by a “reduced bubble model” that implements the basic idea of reverse
Ostwald ripening put forward in Tjhung et al. [Phys. Rev. X 8, 031080 (2018)].
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Self-propelled particles interacting solely with steric
repulsion are well known to be able to spontaneously
separate into a macroscopic dense cluster and a residual
gas, in spite of the absence of explicit attraction forces. This
motility-induced phase separation (MIPS) [1] of active
particles has become a cornerstone of the physics of dry
active matter (in which the fluid surrounding particles is
neglected). As such, it has driven many theoretical works
[2–7] as well as countless numerical studies (see, e.g.,
Refs. [8–15], to name a few prominent ones). The motility
reduction resulting from persistent collisions, which leads
to MIPS, is a generic ingredient encountered in both living
and synthetic active matter [16–19].
Despite its purely nonequilibrium origin, MIPS was

initially described as a conventional phase separation
between two homogeneous macroscopic phases. It was
first predicted in models of quorum-sensing particles [2]
where particle speed decreases with the local density,
without two-body interactions. In this case, equilibriumlike
thermodynamics can be constructed to account quantita-
tively for phase coexistence [20]. For systems of repulsive
disks, attempts were made to model the speed reduction
due to collisions by a quorum-sensing interaction [3,8,10],
but the results are not satisfactory, due to fundamental
differences between the two cases [5,21].
There is indeed mounting evidence that more complex

physics is at play in systems of repulsive disks. In
particular, the surface tension between the dense phase
and the gas, defined via the Laplace law, has been measured
to be negative [20,22,23], triggering a spate of controversy
[24]. This was rationalized at field theoretical level by
including terms that break detailed balance in the classical
theory for equilibrium liquid-gas phase separation. In this

active model B+ (AMB+), surface tension can become
negative for some parameter values, in which case Ostwald
ripening is reversed for vapor bubbles while still remaining
normal for liquid droplets. This means that small vapor
bubbles, contrary to the standard scenario, grow at the
expense of larger ones due to a diffusion flux. When this
happens, simulations of AMB+ lead to either a bubbly fluid
interpreted as microphase separation or to the coexistence
of a dense phase populated of bubbles with an outer gas [7].
There is in fact incidental evidence for such a bubbly liquid
at particle level [9,11,12,20,22], but it has not yet been
studied per se. Very recently, Caporusso et al. [27] have
shown more clearly that in systems with hard-core inter-
actions, the dense phase is made of hexatic subdomains and
interstitial gas regions.
In this Letter we show, within two standard particle

models displaying MIPS, that not only the dense phase is
generically endowed with bubbles, but also that these are
distributed algebraically up to some cutoff scale that we
observe to grow with system size. The dense phase is thus a
self-organized critical fluid, something heretofore un-
suspected. Finite-size scaling based on this observation
suggests that, as system size increases, more and more of
the gas is contained in bubbles. At large densities, we are
able to observe the vanishing of the macroscopic gas
reservoir, and the system is then microphase separated
with bubbles of all sizes up to a maximal bubble size that
depends on the average density. Moreover, the coarsening
of bubbles is anomalous with the typical length scale
growing as t0.22. We elucidate the basic mechanisms at
play, and show, within a reduced model implementing
reversed Ostwald ripening for gas bubbles, that they indeed
lead to a self-organized critical dynamics.
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Self-organized critical phase coexistence.—We first
consider the paradigmatic active Brownian particles
(ABPs) introduced in Ref. [8]. Self-propelled by a force
of constant magnitude F0 along its internal polarity
ui ¼ ðcos θi; sin θiÞ, particle i evolves according to the
overdamped Langevin equations governing its position ri
and polar angle θi:

_ri ¼ μiðF0ui þ FiÞ þ ηi; _θi ¼ ηi; ð1Þ

where Fi ¼ −
P

j≠i∇Vðri − rjÞ is the force exerted on
particle i by the other particles. We choose the pair potential
to be a short-range harmonic repulsion VðrÞ ¼ ðk=2Þ
ðσ − rÞ2 if r < σ and 0 otherwise, with k the repulsive
strength and σ ¼ 1 the interaction radius. In contrast to
previous studies, we allow the mobility tensor μi and the
translational noise ηi to be anisotropic, as expected generi-
cally for active particles: μi ¼ μkuiui þ μ⊥ðI − uiuiÞ, ηi ¼ffiffiffiffiffiffiffiffiffi
2τμk

p
ξkiui þ

ffiffiffiffiffiffiffiffiffiffi
2τμ⊥

p
ξ⊥i ðui × zÞ, and ηi ¼

ffiffiffiffiffiffiffiffiffi
2τμθ

p
ξθi , with

τ a parameter controlling the noise strength, z the unit
vector perpendicular to the plane of motion, and the ξi’s
Gaussian white noises with unit variance.
All simulations below are of large two-dimensional

domains with periodic boundary conditions. Numerical
details are given in Ref. [28]. At phase coexistence, we
observe, inside the macroscopic dense domain, persistent
bubbles with a range of sizes, surrounded by a liquid [29].
Bubbles are more prominent when the mobility is aniso-
tropic [30]. Typical snapshots for μk ¼ 4μ⊥ and μθ ¼ 6μ⊥
are shown in Figs. 1(a) and 1(b) for systems only differing
by their size. Clearly, doubling system size increases the
size of the bubbles. Figure 1(c) shows, at different system
sizes, nðaÞ, the average number of bubbles of area a,
normalized by Sl, the total area of the liquid in which
bubbles live. The distributions collapse on an increasing
range, span several orders of magnitude, and decay

approximately as a power law nðaÞ ∼ a−α with α ≈ 1.75
terminated by a cutoff that increases with system size.
The ABP simulations reported above only show a rather

short scaling range. Numerically, the main limitation is not
so much system size than the huge times needed to obtain
clean averages [31]. We thus implemented an active lattice
gas [32–36]: on a hexagonal lattice [36], particles carrying
an internal polarity pointing to one of the six lattice
directions attempt to perform one of three moves (see
Ref. [28] for details). (i) With a rate rP they perform a “self-
propelled” jump to the nearest site along their internal
polarity direction. (ii) They undergo spatial diffusion to any
neighboring site at rate rD and (iii) rotational diffusion
(changing their polarity to one of its two neighboring
orientations) at rate rR. For optimal efficiency, we impose
strict exclusion and parallel updating.
In the following, we use rP ¼ 1, rD ¼ 2, and

rR ¼ 0.032, typical values leading to phase separation
(a study of the phase diagram will be presented elsewhere).
Persistent bubbles are clearly visible [Figs. 2(a)–2(d)]. The
bubble area distribution in the globally phase-separated
regime is similar to that observed for ABPs but with a much
larger scaling region [Fig. 2(e)]: nðaÞ ∝ a−α with
α ¼ 1.75ð5Þ. This region extends to a cutoff size ac that
grows with the total liquid area as ac ∝ Sγl with
γ ¼ 1.40ð5Þ. The distributions can thus be collapsed on
a master curve using these two exponents [Fig. 2(f)].
In both models presented, we find that whenever the

system is globally phase separated, the dense phase
contains bubbles. This phase bears the hallmarks of self-
organized criticality (SOC) (for recent overviews, see
Refs. [37,38]). Small bubbles are nucleated inside the
liquid, diffuse, and grow by merging with other bubbles.
This process gets slower and slower with increasing bubble
size. Bubbles are eventually expelled into the reservoir of
outside gas upon touching the boundary, in sudden,
avalanchelike events, providing separation of timescales
(see movie in Ref. [28]). As in typical SOC systems,
avalanches occur at all accessible scales.
The SOC-like mechanisms leading to an algebraic

distribution of bubbles do not invalidate the global picture
of a phase separation between gas and liquid with fixed
densities ρg and ρl independent of system size up to small
finite-size corrections. However, the gaseous part of the
system is formed here of the outside gas reservoir and of
the bubbles. With this definition, the gas fraction xg
fluctuates very little and is independent of system size to
a good approximation [Fig. 3(a)]. Moreover, xg varies
linearly with the average density ρ0 [Fig. 3(b)] so that the
lever rule still applies: For ρg < ρ0 < ρl, the average
density sets the fraction of liquid and gas in the system
xg ¼ ðρl − ρ0Þ=ðρl − ρgÞ and xl ¼ 1 − xg. The fluctua-
tions of xb, the fraction of the system occupied by bubbles,
in contrast to the gentle ones of xg, are large, intermittent,
and increase with system size. [Note the huge timescales

(a)

(b)

(c)

FIG. 1. Active Brownian particles. Typical snapshots in steady
state at system size S ¼ 1440 × 360 (a) and S ¼ 2880 × 720 (b).
[Colors represent the packing fraction calculated over 2 × 2
boxes, from 0 (dark blue) to 1 (red).] (c) Rescaled distribution
of bubble area nðaÞ=Sl at various system sizes (indicated in
legends). Parameters are ρ0 ¼ Nπ=4S ¼ 0.6, τ ¼ 0.01,
μ⊥ ¼ 1=4, μk ¼ 1, μθ ¼ 3=2, F0 ¼ 1, and k ¼ 20. Typical
averaging time is 4 × 106 after a transient of 106.
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over which fluctuations of xb occur even at the modest sizes
shown in Fig. 3(a).] Their stronger and stronger peaks
reflect the larger and larger avalanches (expulsion of
bubbles) [Fig. 3(a), insets].
Microphase-separated bubbly liquid.—The lever rule

immediately tells us that the SOC scaling evidenced above
cannot continue asymptotically when system size S → ∞.
Indeed, the bubble area fraction grows with system size:

xb ≡ 1

S

Z
∞

0

anðaÞda ≈
Sl
S

Z
ac

0

a1−αda ∝ xlS
γð2−αÞ
l ; ð2Þ

where we used the scalings of nðaÞ and acðSlÞ. Our
numerical data confirm this [Fig. 3(c)]. Surely, Eq. (2)

ceases to be possible once all the gas is contained in the
bubbles, xb ¼ xg, which happens at a typical crossover size
S� ∝ ðxg=xlÞ1=½γð2−αÞ�=xl. The cutoff on bubble size then
reads

a�c ≡ acðS�Þ ∝ ðxg=xlÞ1=ð2−αÞ: ð3Þ

Equation (3) implies that S� and a�c depend on the average
density ρ0 through xg and xl and that they diverge near the
gas binodal ρ0 → ρg. On the other hand, they get smaller
when approaching the liquid binodal. Beyond S� the
system settles in a microphase-separated state, a homo-
geneous liquid with bubbles of all sizes up to a�c. SOC
scaling then breaks down, and nðaÞ becomes independent
of system size.
Using our lattice gas model at high enough ρ0, we are

able to reach system sizes where all the gas is contained in
bubbles, and the system settles in the microphase-separated
state (Fig. 2). The data are in agreement with our scaling
arguments: nðaÞ is then independent of system size and is
cut off at some scale that depends only on the average
density [Fig. 2(g)]. Plotting nða=a�cÞ collapses the distri-
butions for different ρ0, confirming the validity of Eq. (3)
[Fig. 2(h)], at least close to the liquid binodal.
Reduced bubble model.—The AMB+ field theory of

Ref. [7] suggests that bubbles exist because of reverse
Ostwald ripening, which causes large bubbles to shrink at
the advantage of small ones, thus competing with coales-
cence. To test whether these ingredients are sufficient to
reproduce the phenomenology described above, we imple-
mented them in a reduced model whose degrees of freedom
are the positions and radii of bubbles that we assume to be
perfectly circular [39].
The bubble particles evolve in continuous time in a

continuous domain. New bubbles with radius r0 ¼ 1 are

(a) (b)

(c)

FIG. 3. Active lattice gas at ρ0 ¼ 0.63. (a) Time series of the
area fraction occupied by bubbles xb (bottom) and by total gas
xg (top) for system sizes S ¼ 384 × 256 and S ¼ 768 × 512.
Insets: two snapshots of the system taken right before and at the
sharpest peak in the xb time series at S ¼ 768 × 512 (red curve,
around t ¼ 1.3 × 1010). (b) Linear variation of xg with ρ0 (lever
rule) computed for S ¼ 384 × 256. (c) Bubble fraction xb vs
system size S.

(c) (d)

(g) (h)

FIG. 2. Active lattice gas. (a)–(d) Snapshots in the steady state at ρ0 ¼ 0.8 in systems of different sizes from S ¼ 384 × 256 to
S ¼ 1532 × 1024 [colors as in Figs. 1(a) and 1(b)]. For the two biggest sizes (c),(d), the system is in the microphase-separated regime.
(e)–(h) Bubble area distribution in the SOC scaling regime [(e),(f) ρ0 ¼ 0.6] and in the microphase-separated regime (g),(h). (e) nðaÞ=Sl
at various system sizes [indicated by the legends in (f)]. Typical averaging time is 1010 time steps after discarding a transient of 108.
(f) Same as (e), but as function of a=Sγl with γ ¼ 1.40. (g) nðaÞ=Sl at different ρ0 values for S ¼ 768 × 1024 (dashed lines) and
S ¼ 1536 × 2048 (solid lines). (h) Same as (g), but rescaled according to Eq. (3). The gray dashed lines have slope −α ¼ −1.75.
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nucleated in the liquid at a small rate kn per unit area. In line
with the reverse Ostwald scenario, the new bubbles are
nucleated at the expense of the larger ones: all other
bubbles shrink by an amount κrð1 − r0=rÞ (where r is
their current radius), with κ chosen such that the total area
of gas is conserved. (Note that this neglects spatial effects:
In principle, bubbles would equilibrate in priority with
neighboring ones.) Bubbles chosen randomly among the
current nðtÞ existing ones diffuse with a coefficient D, that
for simplicity we assume constant. If the move brings the
bubble into contact with another, they merge into a single
one located at their “center of mass,” conserving total area.
To have the same geometry as in globally phase-separated
microscopic models, we also add the possibility to have a
gas reservoir outside two parallel interfaces that move
along the dynamics to ensure that xl remains constant.
While a complete presentation of the behavior of this

reduced model and some variants will be reported else-
where, here we show that it typically yields a pheno-
menology remarkably similar to that described above.
Fixing D ¼ 1 and kn ¼ 10−4, we vary xg, the total gas
fraction, and the system size S. At high xg or small system
size S, we observe the SOC coexistence between a bubbly
liquid and a gas reservoir [Figs. 4(a) and 4(b)]. The bubble
size distribution scales as in Fig. 2(f) with exponent values
close to those of the lattice gas [α ¼ 1.77ð2Þ and
γ ¼ 1.48ð5Þ], but preliminary results (not shown) suggest
that they are not universal. Decreasing xg or increasing S,
the gas reservoir becomes smaller and smaller until it
disappears, at which point we have a microphase-separated
regime with nðaÞ independent of system size [Figs. 4(c)
and 4(d)]. Despite its simplicity, our bubble model thus
captures the essential phenomenology described here.

Coarsening process.—We finally study the growth of
order following random initial conditions, considering the
characteristic length extracted from the structure factor
[28]. We only present results for our active lattice gas
(Fig. 5), but similar ones, albeit of lesser quality, were
obtained for ABPs. When the liquid is the majority phase,
after an initial transient, the coarsening is dominated by
vapor bubbles and follows an anomalous t0.22 law. We
currently lack an analytical explanation of such law.
Instead, when the liquid is the minority phase, it is
dominated by liquid droplets and coarsening is normal
t1=3 as expected both from Ostwald ripening and coales-
cence in models with conserved order parameter [41]. In
fact, within the liquid droplets we expect the bubbles to
coarsen as well with the anomalous law above. However,
being slower than the liquid coarsening, it is not surprising
that this is not visible in our data.
Conclusion.—We have shown, using two very different

models of active particles interacting strictly by pairwise
repulsion, that the dense phase resulting from MIPS is
critical, containing bubbles of gas distributed algebraically
up to some cutoff scale. We observe at high density that, as
long as an outer gas phase is present, this cutoff increases as
a power of system size. At large enough system size and/or
global density, the gas reservoir may disappear and
the cutoff scale becomes independent of system size.
This asymptotic regime is thus microphase separated. A
“reduced bubble model” captures this essential phenom-
enology within a minimal framework that implements the
basic idea of reverse Ostwald ripening put forward
in Ref. [7].
In the models presented here, the asymptotic cutoff scale

a�c grows very fast as ρ0 departs from ρl. Numerically, we
are only able to access the asymptotic regime at rather high
density (Fig. 2). What happens asymptotically at low
densities thus remains unknown, but extrapolating the
scaling laws uncovered here leads us to speculate that
our scenario remains valid in the whole phase coexistence
region ρg < ρ0 < ρl.

(b) (d)

(a) (c)

FIG. 4. Reduced bubble model. (a),(c) Typical snapshots at
xg ¼ 0.7 in the SOC coexistence regime (a) and at xg ¼ 0.05 in
the microphase regime (c). System size S ¼ 600 × 400. The
liquid and gas are represented in red and black, respectively. (b),
(d) Bubble area distribution in the two regimes, rescaled using
α ¼ 1.77, γ ¼ 1.48. For all panels, D ¼ 1, kn ¼ 10−4.

(a) (b)

(c)

(a) (b)

(c)

FIG. 5. Coarsening process in the active lattice gas
(S ¼ 8192 × 6144). (a) Time series of the typical length scale
L̃ starting from random initial conditions at different ρ0 values.
(b),(c) Snapshots of the system taken at t ¼ 107 for ρ0 ¼ 0.5 (b)
and 0.7 (c). At all times shown here, L̃ ≪

ffiffiffi
S

p
.
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This Letter leaves several important open questions. In
particular, whether the scenario described here is observed
in the presence of any repulsion and whether the critical
exponents are universal could be addressed numerically by
considering other models showing MIPS, the AMB+ field
theory, and reduced bubble models with different para-
meters. In this context, the very recent work of Caporusso
et al. [27], where a very hard potential between ABPs leads
to crystalline clusters that aggregate to form a dense phase
with interstitial gas, might be understood within our
scenario. Finally, in regard to the current controversy about
the nature of the critical point of MIPS [36,42], our results
make it unlikely that it belongs to the Ising universality
class, but this hard problem remains unsettled.
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