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We report the realization of a Hanbury Brown and Twiss (HBT)-like experiment with a gas of interacting
bosons at low temperatures. The low-temperature regime is reached in a three-dimensional optical lattice
and atom-atom correlations are extracted from the detection of individual metastable helium atoms after a
long free fall. We observe, in the noncondensed fraction of the gas, a HBT bunching whose properties
strongly deviate from the HBT signals expected for noninteracting bosons. In addition, we show that the
measured correlations reflect the peculiar quantum statistics of atoms belonging to the quantum depletion
and of the Bogoliubov phonons, i.e., of collective excitations of the many-body quantum state. Our
results demonstrate that atom-atom correlations provide information about the quantum state of interacting
particles, extending the interest of HBT-like experiments beyond the case of noninteracting particles.
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In systems of noninteracting and indistinguishable quan-
tum particles, correlations are rooted in quantum statistics.
A paradigmatic example is the bunching of photons
received from a source, as described by Glauber’s quantum
formalism [1] to interpret the Hanbury Brown and Twiss
(HBT) observation of intensity [2] or photon [3] cor-
relations. Such a method yields information both on the
photon statistics (chaotic vs fully coherent [4]) and on the
spatial distribution of the emitters, i.e., on the size of
the source [5].
This approach pioneered by Hanbury Brown and Twiss

was successfully extended to characterize quantum states in
various situations, ranging from high-energy physics [6]
and solid-state devices [7,8] to cold atoms [9–16]. In
noninteracting atomic gases at thermal equilibrium, the
bunching (for bosons) [10–13] and antibunching (for
fermions) [14–16] is set by the quantum statistics and
the thermal occupation of single-particle states. On the
other hand, atom-atom correlations are absent in a fully
coherent Bose-Einstein condensate (BEC) [11,12], in
analogy with the lack of photon-photon correlations in a
single mode laser beam [4].
In contrast, HBT-like measurements with interacting

particles are scarce. In optics, the role of nonlinearities
during the propagation from the source to the detector was
studied [17], but interacting photon fluids as a source [18]
have not yet been probed. With atoms, two-body correla-
tions were used to characterize the coherence properties of
weakly interacting Bose gases across the Bose-Einstein
transition [19], in a regime where the temperature exceeds
the interaction energy. In the opposite regime where

interactions dominate, one may observe the interplay
between quantum statistics and interactions in many-
body systems. This is the goal of the experiment presented
here.
In this Letter, we report on the measurement of momen-

tum-momentum correlations in an ensemble of interacting
atoms, in the low-temperature regime dominated by inter-
actions. This regime is achieved by using a three-
dimensional (3D) optical lattice to enhance the interactions.
The two-body correlations are extracted from detecting
individual metastable helium atoms (4He�) after a long free
fall [20,21]. We characterize the bunching properties—
amplitude and width of the HBT bump—and highlight
the differences from previous findings in noninteracting
ensembles. These remarkable differences are interpreted in
the framework of the Bogoliubov theory and are attributed
to the statistical properties of the quantum depletion and of
the collective excitations—Bogoliubov phonons—in the
ensemble of interacting atoms. Surprisingly, the agreement
with the Bogoliubov theory extends well beyond the
temperature range where this theory is anticipated to be
valid. Investigating this experimental observation is an
interesting direction for future theoretical works using more
sophisticated approaches.
In analogy with HBT experiments with an incoherent

source of light, where photon correlations are measured in
far-field, HBT experiments with thermal He� gases
[11,13,15] look for atom correlations after a long free fall,
i.e., in the basis of single-particle momentum states jki. For
each sample released onto a position- and time-resolved
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detector sensitive to individual He� atoms, the atom
distribution is recorded in 3D, and the two-body correlation
function for that sample is calculated over a volume of
interest Ωk. Repeating the procedure with many samples,
one averages to obtain an experimental evaluation of the
volume integrated two-body correlation function [22]

gð2ÞΩk
ðδkÞ ¼

R
Ωk
ha†ðkÞa†ðkþ δkÞaðkÞaðkþ δkÞidk

R
Ωk
hnðkÞihnðkþ δkÞidk ;

ð1Þ
where a†ðkÞ [respectively aðkÞ� is the creation (respec-
tively annihilation) operator associated with momentum k.
In an ideal (noninteracting) and noncondensed Bose gas at

thermal equilibrium, one expects gð2Þð0Þ ¼ 2 because
of (chaotic) Gaussian statistics. The Gaussian nature of the
statistics derives from the random and uncorrelated popula-
tions of the momentum states at thermal equilibrium [23,24].
Moreover, the in-trap density of a noncondensed Bose gas has
a Gaussian shape with a rms size sth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mω2

p
, and the

bunching bump has therefore a Gaussian shape with a width
(half-width at 1=e) σidealk ¼ 1=sth [11,23]. This relation is
analogous to that used to deduce the angular size of a star from
the intensity HBT correlation length [5]. This description of
atom correlations also applies to weakly interacting bosons
when the temperature largely exceeds the interaction
energy [11,13].
In the opposite low-temperature regime where inter-

actions dominate, the bunching properties differ because
interactions affect the population statistics of the jki states.
To get some insight into this complex physics, we use
the Bogoliubov approximation for interacting bosons [25].
The interacting Bose gas is described as a many-body
ground state—the condensate and the quantum depletion—
and an ensemble of noninteracting (quasiparticle) excita-
tions. Even though both the quantum depletion and the
Bogoliubov excitations contribute to the noncondensed
fraction, they have a very different nature. The quantum
depletion, present at T ¼ 0, corresponds to a pure
entangled state of atomic pair with opposite momenta.
The Bogoliubov excitations, only present at T > 0 consists
of a thermal state of noninteracting (quasiparticles) bosons
with populations set by the temperature and a Gaussian
statistics. Because the Bogoliubov transform between
particle and quasiparticle operators is linear, the statistics
of the particle momenta associated with those quasipar-
ticles is Gaussian as well, hence gð2Þðδk ¼ 0Þ ¼ 2 [26–28].
Quite remarkably, a bunching at δk ¼ 0 is also expected for
atoms belonging to the quantum depletion. That bunching
stems from the fact that when one observes atoms with
momenta almost equal, the correlations are measured
between atoms belonging to two different pairs. The
density matrix describing these atoms, obtained by tracing
over the second partners of each pair, which are ignored,
has a chaotic character. This origin is analog to that of the

thermal (chaotic) statistics encountered when one observes
only one partner of parametric-down conversion photon
pairs [29] or of atom pairs produced in a two-body collision
process [30,31].
For an interacting gas described within the Bogoliubov

approximation, the width σBk of the two-body correlation
bump in k space is expected to behave differently from
the 1=

ffiffiffiffi
T

p
variation of an ideal thermal gas [26]. At T ¼ 0, the

only states relevant to the bunching belong to the quantum
depletion. Their spatial in-trap extent, which is limited to the
BEC radius RBEC, determines σBk ðT ¼ 0Þ. Since the BEC
rms size is ∼RBEC=

ffiffiffi
2

p
, a rough estimate is σBk ðT ¼ 0Þ∼ffiffiffi

2
p

=RBEC, in analogy with σidealk ¼ 1=sth. At small nonzero
temperatures (kBT ≪ μ), low-lying Bogoliubov excitations
are populated, whose spatial in-trap size hardly extends
beyond RBEC as well. When the temperature increases, the
Bogoliubov excitations progressively extend out of the con-
densate and σBk ðTÞ should slowly decrease with increasing T.
In the low-temperature regime, both quantum depletion and
thermal Bogoliubov excitations are thus expected to signifi-
cantly contribute to the bunching, leading to a width is
definitely smaller than that of an ideal thermal gas.
At sufficiently low temperatures, the above description

for harmonically trapped interacting bosons also applies
when a 3D shallow optical lattice is present. In shallow
lattices, the ratio U=J of the on-site interaction energy U to
the tunneling amplitude J [see Fig. 1(a)] is smaller than that
of the Mott transition, and the gas is Bose-condensed at low
temperatures. At small momenta, the usual Bogoliubov
description still holds provided one uses the effective
mass m� ¼ ℏ2=2Jd2 (d is the lattice spacing, correspond-
ing to a momentum kd ¼ 2π=d) and trap frequency ω� ¼
ω

ffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

[32]. This description is accurate in the low-
temperature regime (T < U) investigated in this work
where the physics is dominated by excitations in the lower,
linear part of the dispersion relation and have a collective
nature. Moreover, the bunching properties of ideal lattice
bosons are identical to those of ideal bosons in the same
harmonic trap, since m�ω�2 ¼ mω2. Using an optical
lattice thus appears specially promising to reveal the effect
of interactions, with the additional advantage of reinforcing
the strength of interactions and facilitating the desired
kBT ≪ μ regime.
The experiment starts with the production of a 4He�

BEC with N ¼ 40ð4Þ × 103 atoms which is loaded in a 3D
optical lattice of amplitude V ¼ 9.5ER [20], with ER=h ¼
h=8md2 ¼ 20.7 kHz and d ¼ 775 nm. The overall har-
monic trap is isotropic, with a frequency ω=2π ¼
300ð20Þ Hz. With the lattice amplitude we use, we have
U=J ≃ 10 (U=h ¼ 4350 Hz and J=h ¼ 450 Hz). The inter-
action energy is μ ¼ n0U, where the lattice filling n0 at
the trap center is close to one in this work (0.9 ≤ n0 ≤ 1.6).
The critical temperature for Bose-Einstein condensation is
TBEC ¼ 5.9ð2ÞJ=kB [20].
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We measure 3D single-atom-resolved distributions with
the He� detector after a free fall of ∼325 ms [see Fig. 1(b)]
[20]. Since interactions do not affect the expansion from a
lattice with less than two atoms per site [20,21], the long
free fall maps the in-trap momentum distribution on the
measured spatial distribution. Recording the 3D momen-
tum distributions provides a natural separation of the
condensate from its depletion. Indeed, the k-space density
of a lattice BEC is made of periodically spaced (period kd)
sharp peaks of width ∼1=RBEC, while the noncondensed
fraction—quantum depletion and thermal phonons—
extends over the entire Brillouin zone of width kd.
Because RBEC ≃ 23d ≫ d here, the contribution of the
noncondensed fraction is negligible in the k-space volume
∼R−3

BEC occupied by the condensate. We exploit this pro-
perty to perform the integral of Eq. (1) over different
volumes Ωk, which allows us to investigate the HBT
correlations in the two components separately (see
Fig. 2). We determine the correlation properties along
one lattice axis at a time, with a small transverse integra-
tion of �Δk⊥ ≤ 1=RBEC to increase the signal-to-noise
ratio [33].

An example of measured correlation functions gð2ÞΩk
ðδkÞ

in the two components is plotted in Fig. 2. We find that

gð2ÞΩk
ðδkÞ is constant and equal to 1 in the condensate

[see Fig. 2(a)], i.e., no bunching is observed. This is
consistent with the fully coherent nature of the condensate
[23]. In contrast, a well-contrasted bunching is visible in the
noncondensed fraction [see Fig. 2(b)]. In the following, we
analyze and discuss the bunching properties of the non-
condensed fraction.
To exploit our data, we fit the bell-shaped 1D cuts

gð2ÞΩk
ðδkjÞ (j ¼ fx; y; zg) of the bunching bump along the

reciprocal lattice axes with Gaussian functions. We find

that gð2ÞΩk
is isotropic, a property consistent with the isotropy

of the trap geometry. In the analysis of the bunching bump,
we account for the transverse integration Δk⊥ and the
resolution of the He� detector [rms width σ ¼ 2.8ð3Þ×
10−3kd] to extract the bunching amplitude gð2Þð0Þ − 1 and
width σk [33]. Note that the data shown in Fig. 2(b) are the
raw data before the deconvolution with the point spread
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FIG. 2. Two-body HBT correlations in a strongly interacting
lattice Bose gas at T ¼ 2.9J. The plots are 1D cuts through
the 3D correlation function along the lattice axis ux with

Δk⊥ ¼ 10−2kd. (a) Two-body correlation function gð2ÞΩk
ðδkÞ in

the condensate. Inset: the red sphere depicts the volume Ωk
(jkj < 0.04kd) over which the correlations are calculated. We

find gð2ÞΩk
ðδkxÞ ¼ 1.0ð1Þ for the condensate mode, i.e., no bunch-

ing as expected when one mode only is populated. (b) Two-body

correlation function gð2ÞΩk
ðδkÞ in the noncondensed fraction. Inset:

the green region depicts the volume Ωk (0.1kd < jkj < 0.5kd)
over which the correlations are calculated. Note that the peaks
associated with the condensate are excluded from this volume.
One observes a well contrasted bunching whose bell shape is
fitted with a Gaussian function (dashed line) to quantify the
bunching properties.
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FIG. 1. (a) Interacting metastable helium 4He� atoms are loaded
into a 3D optical lattice of spacing d ¼ 775 nm. The tunneling
energy is denoted J and the on-site interaction energy U. In this
work, we set U=J ¼ 10. (b) Sketch of the detection method.
Atoms are released from the lattice and reach the He� detector
after a long free fall (325 ms) that maps the momentum
distribution of the trapped atoms into the measured spatial
distribution. The use of a microchannel plate, in combination
with delay-line anodes (not shown), allows for the detection of
individual atoms in three dimensions [20] from which the HBT
correlations are extracted. (c) Dispersion relation of the Bogo-
liubov excitations of the interacting gas in the lattice (solid blue
line, U=J ¼ 10) and of noninteracting particles in the lattice
(dashed orange line, U=J ¼ 0). The collective nature of the
excitations is dominant in the linear part of the Bogoliubov
spectrum at low energies, which is associated with phonons.
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function of the detector, i.e., the amplitude of the bump
in Fig. 2(b) is smaller than the bunching amplitude
gð2Þð0Þ − 1 shown in Fig. 3(a) because of the resolution
of the detector. Based on this protocol, we investigate
the bunching properties across the BEC transition, while
keeping the ratio U=J ¼ 10. The temperature T is varied
by heating the gas in a reproducible manner [20]
and calibrated by comparison with ab initio quantum
Monte Carlo calculations [33]. The results are plotted
in Fig. 3.

First, we find that the bunching amplitude is constant
with temperature and equal to gð2Þð0Þ − 1 ¼ 1.0ð1Þ [see
Fig. 3(a)]. At large temperatures T > TBEC, this observa-
tion corresponds to the usual HBT bunching of thermal
bosons. This result extends below TBEC and it can be
interpreted in terms of the Bogoliubov picture of non-
interacting quasiparticles given in the introduction, even
though the relatively large noncondensed fraction might
suggest that interactions between quasiparticles should be
important. This quite surprising observation can be related
to the fact that, in homogenous systems without a lattice
[34,35], the Bogoliubov approach was shown to be reliable
up to values of the quantum depletion (∼15%) similar to
that of our experiment. Measuring gð2Þð0Þ ≃ 2 for kBT=μ ≤
0.4 thus confirms the chaotic statistics of the thermally
excited Bogoliubov phonons. Moreover, this result extends
to temperatures as low as kBT=μ ¼ 0.17 where an equal
fraction of atoms belong to the quantum depletion and to
the Bogoliubov phonons. This suggests that gð2Þð0Þ ¼ 2
also for the quantum depletion, albeit for the different
mechanism sketched in the introduction, i.e., a partial trace
over the atom pairs in the quantum depletion.
Second, the bunching width σk is systematically smaller

than that of ideal bosons σidealk , in the same trap at the same
temperature [see Fig. 3(b)]. This difference is more
pronounced at small values of kBT=μ as a result of
interactions. For T > TBEC, one expects to observe the
width corresponding to a thermal gas with interactions that
broaden the in-trap size with respect to that of an ideal
thermal gas. This prediction is compatible with our obser-
vation of σk below σidealk . Note that we could not increase
the temperature beyond kBT ∼ 0.9μ while keeping the
atoms in the lowest lattice band. In the opposite
low-temperature regime, the value σk ≃ 2=Rμ corresponds
to an in-trap size close to that of the condensate
RBEC ¼ RμðT ¼ 0Þ. In an attempt to be quantitative, we
have numerically solved the simplified case of a trapped 1D
interacting Bose gas in the Bogoliubov approximation with
parameters consistent with our 3D experiment. More
specifically, we use in the numerics the ratio μ=ℏω ¼ 51
identical to that of the experiment μ=ℏω� ¼ hn0iU=ℏω�,
and the 1D integral of Eq. (1) is calculated for the
noncondensed atoms only (excluding the region
kRBEC < 10) using a 3D-like weight ∝ k2 [33]. The
numerical result σBk (red square) is compatible with our
measured low-temperature σk. Since the value of σBk
crucially depends on the collective nature of
the excitations and can be unambiguously attributed to
the spatial extension of the Bogoliubov phonons and
quantum depleted atoms within the condensate [33], we
ascribe the measured width to the same physical origin.
A theoretical model quantitatively accurate at any
temperature would require more sophisticated techniques
that go beyond the free-space linearized Bogoliubov
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FIG. 3. (a) Bunching amplitude gð2Þð0Þ − 1 in the noncon-
densed fraction as a function of the reduced temperature kBT=μ.
The measurements are consistent with gð2Þð0Þ ¼ 2, i.e., with a
chaotic statistics at any temperature. The vertical blue dashed line
in both panels signals TBEC. (b) Two-body correlation width σk
plotted as a function of kBT=μ. For each temperature, the value of
the temperature-dependent interaction energy μðTÞ ¼ n0ðTÞU in
the experiment is calculated from the lattice filling n0 at the trap
center. σk is expressed in units of ðRμÞ−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mω2=2μðTÞ

p
. Rμ

coincides with the BEC radius at T ¼ 0, RμðT ¼ 0Þ ¼ RBEC. The
red square corresponds to a numerical calculation of the corre-
lation width σBk for a harmonically trapped one-dimensional
interacting Bose gas in the Bogoliubov approximation, with
parameters consistent with the three-dimensional experiment (see
main text and [33]). The dashed black line is the prediction
σidealk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏω=kBT
p

for noninteracting bosons at thermal equilib-
rium, for which σidealk Rμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=kBT

p
.
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approximation used here, so to explicitly include the Bragg
folding of the Bogoliubov dispersion in the lattice and the
interactions between quasiparticles due to the relatively
large interaction strength and high temperature. This will be
the subject of future studies.
In conclusion, we have observed and fully characterized

the atom bunching occurring in the noncondensed fraction
of an interacting Bose gas. We have shown that the
observed characteristics of that bunching reflect the inter-
play of interactions and quantum statistics, through the
properties of phonons and of the quantum depletion. Our
results thus demonstrate that momentum-momentum cor-
relations provide information about the quantum state of
strongly interacting bosons, extending the interest of HBT-
like experiments beyond the case of non-interacting par-
ticles. This method will be used to look for two-body
correlations at opposite momenta that are expected for the
quantum depletion and other many-body phenomena [36].
Such a measurement will demand to achieve the large
signal-to-noise ratio required at finite temperature [28], but
will be of great importance to directly reveal pairing
mechanisms.
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