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Subharmonic Entrainment Breather Solitons in Ultrafast Lasers
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We study theoretically and experimentally the subharmonic entrainment (SHE) breather soliton in mode-
locked lasers for the first time, in which the ratio of the breather period to the round-trip time is an integer.
We build a non-Hermitian degeneracy map of breather soliton, and illustrate that SHE arises between the
two exceptional points (EPs). We obtain SHE at the ratio of 20, observe the evolution of breather soliton
when tuning the gain and/or cavity loss, and prove that this phenomenon can improve the stability of
breather soliton. Our research brings insight into the EP physics of ultrafast lasers and makes the mode-
locked laser a powerful test bed for non-Hermitian degeneracy, which may open a new course in ultrafast

laser research.
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Solitons, self-localized coherent structures, are ubiqui-
tous in nature and have been observed in most branches of
nonlinear science [1-5]. Mode-locked lasers constitute an
ideal test bed for investigating solitons [6], where solitons
arise from the balance among dispersion, nonlinearity, and
environmental energy exchange. Once given the medium
parameters, solitons generally display a fixed profile over
propagation [7,8], which enables the application in design-
ing pulse sources [9]. In many systems, the amplitude and
duration of solitons can oscillate or breathe periodically.
Breather solitons were first demonstrated in fiber cavities
[10] and then observed in optical microresonators [11,12]
and mode-locked lasers [13]. Because of strong connection
with the Fermi-Pasta-Ulam recurrence [14], turbulence
[15], modulation instability [16], and rogue wave formation
[17], breather solitons have attracted considerable attention.
Furthermore, the ability of breather soliton to increase the
resolution of dual-comb source (composed of two fre-
quency combs with slightly different repetition rates)
implies that the breather soliton is attractive in practical
applications [18].

Recently, the breather soliton generated in Kerr-
nonlinear optical resonators was predicted to exhibit sub-
harmonic entrainment (SHE): an integer ratio 7,/T, = n
of the breather period 7', to the round-trip time 7', [19]. It
is a special frequency locking that occurs between the two
exceptional points (EPs) [20]. The EP is a branch point
singularity in the parameter space [21-23] that arises
when two or more eigenvalues of the non-Hermitian
Hamiltonian and their corresponding eigenvectors
become degenerate. Such degeneracies are distinct
features of non-Hermitian systems, which do not obey
conservation laws because the systems exchange energy
with environment. The breather soliton laser, which has
two frequencies (the repetition frequency f, and the
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breather frequency f,), can be deemed as a non-
Hermitian system. The eigenvalues of the non-Hermitian
Hamiltonian between the EPs are complex with the same
real part [21], resulting in frequency locking in the
breather soliton system, from which the SHE breather
soliton arises. Although it was predicted in Kerr-nonlinear
resonators [19], the SHE breather soliton has not been
examined experimentally.

In this Letter, we present the first experimental obser-
vation of the SHE breather soliton. We find that the breather
soliton laser exhibits non-Hermitian degeneracy in certain
condition and that the SHE arises between the two EPs.
Experimentally, we fabricate a mode-locked fiber laser,
which is easily driven into the breather soliton regime by
tuning the pump power and/or cavity loss. We record the
change of breather soliton with the pump power and
characterize SHE wusing dispersive Fourier-transform
(DFT) technique [24-28] and dispersive temporal inter-
ferometer (DTI) [29]. We prove that SHE can enhance the
stability of breather soliton. Simulations also prove that
SHE arises between the EPs.

In principle, a stable mode-locked laser only sustains the
modes at the free-running cavity frequency f,; (corre-
sponding to the cavity round-trip time 7 ) together with its
harmonic (at the repetition frequency of mf,;, m is an
integer). Nevertheless, the breather soliton mode-locked
laser somewhat is an unstable system, in which another
mode, the free-running breather frequency f, arises.
Typically,f,0 < f,0 [19]. Figure 1(a) depicts the free
propagation of f,, which shows slight difference between
nT,, and the free-running breather period T7,, by
A = Tyy—nT,y, with |A| < T,q/2. In Fig. 1(b), the soliton
is treated as repeating in a period nT,,, with uniformly
distributed n solitons in each period. Each soliton repeats in
the free-running subharmonic frequency f,,o = f,o/n

© 2020 American Physical Society
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FIG. 1. Dynamics of non-Hermitian degeneracy in breather
soliton laser. (a) Breather soliton train (the gray line). The blue
dots are the breather amplitude at breather period 7', and the
period of the red line is nT,. (b) Conceptual graph of the modes
fnro- The adjacent modes have phase difference 2z/n. The gray
line is the soliton train. (c) The blue solid curve (red dashed line)
shows the dependence of f;, on f,, when x # 0 (x = 0) as per
Eq. (2). The upper left (lower right) inset represents the dynamics
of breather frequency shift between (out) the two EPs.

But, the location difference of these solitons makes the
corresponding frequency components at f,,o have different
phases [Fig. 1(b)]; hence, the ensemble intensity at f,,q is
zero and undetectable. However, in the breather soliton
laser, f;0 and f,,o have close frequencies with difference
6= fp0— fno (|8 < fro/2n), and they can interplay over
propagation, making the laser a non-Hermitian system
(more detailed treatment is provided in Supplemental
Material [30]).

In a laser that delivers stable breather soliton, the net gain
for £y and f,,,o should be 0. Therefore, the interplay of the
two frequencies can be described through a set of time-
dependent coupled equations [20,21]:

d (fa\ (S0 K\ (@
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where a;, represent the amplitudes of f,, and fj
components, and « is the coupling rate. Here, the coupling
between f,,o and f,, components may be induced by the
round-trip change of gain, total nonlinearity, loss, or the
environmental perturbation. Clearly, the laser displays a
frequency locking-unlocking transition when varying f,
which can be manipulated by tuning cavity parameters
like pump power and loss. Equation (1) has two eigen-
values, namely (f,,,0 + f»0)/2 & \/6*/4 — ?, one of which
is the breather frequency f;, while the other the subharmonic
cavity frequency f,,. We can see that f,, = f,, in the laser
because most of the energy is locked into f,,, and its
harmonic. Thus, we obtain the expression of f;, [21,30]:

So="Fur+ sgn(é) \ 8% — i (2)

This equation has identical form with the one in
Ref. [19]; here, we directly obtain such locking from the

coupled equations. Equation (2) is plotted in Fig. 1(c).
When 6 = 2k, an EP occurs, where the two eigenvalues
coalesce (upper left inset). Near EPs (|5| > 2k), the breather
frequency is pulled by the soliton subharmonic frequency,
as shown in the lower right insert in Fig. 1(c). Between the
EPs, f}, is a complex number in Eq. (2), whose real part
represents the breather frequency and is equal to f,,. The
SHE arises in this region. For simplicity, f;, henceforward
represents the real part of Eq. (2).

To observe the dynamics of breather solitons, we
fabricated a mode-locked laser, sketched in Fig. 2(a).
The laser incorporates a 1.36 m Er-doped fiber (EDF),
pumped by a 980 nm laser. The other fibers are the single-
mode fibers (SMF), and the total cavity length is 4.82 m.
The group velocity dispersion f3, is 65 ps>km~! for EDF
and —22 ps> km~! for SMF at 1550 nm. The laser is mode
locked with the nonlinear polarization rotation (NPR)
technique, which functions as an artificial saturable
absorber through a polarization dependent isolator (PDI)
and two polarization controllers (PCs) [31]. The pulse
spectra are single-shot monitored by the DFT technique
through 10 km SMF and the relative time and phase of
adjacent pulses are measured by the DTI [30]. The DFT
technique can stretch the pulse to map its spectrum into a
temporal waveform [24]. The DTT is a novel technique for
ultrashort time event measurement. As shown in Fig. 2(a),
two optical couplers (OCs) and the extra fibers (EFs)
reassemble the solitons from adjacent round-trips into a
closely spaced dual-soliton pulse with time separation z.
The pulse is then stretched by 10 km SMF into a time
interferogram with interference fringes. Then, the relative
separation and phase of the two solitons are encoded into
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FIG. 2. Breather soliton laser. (a) The experimental setup. The
left part is the mode-locked fiber laser and the right part is the
real-time detection system. (b)—(d) Pulse train, frequency spec-
trum, autocorrelation trace of the generated pulses when the
pump power is 404 mW. (d) is the autocorrelation of time-
averaged profile of the breather soliton because the profile
oscillates at the breather frequency. OC, optical coupler;
WDM, wavelength division multiplexer; EFs, extra fibers;
PDs, photodetectors, 40 GHz; OC1, 50:50; OC2, 50:50;
0C3, 35:65.
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FIG. 3. Observation of breather solitons when the pump power
is 404 mW (a)—(c) and 414 mW (d)—(f). (a),(d) DFT recording
single-shot spectra over 100 consecutive round-trips. The black
lines are the corresponding pulse intensity. (b),(e) Interferograms
of adjacent pulses. (c),(f) Interferograms picked from (b),(e) with
interval of 20 round-trips.

the interferogram. The total dispersion of the EFs is less
than 0.5 fs/nm and 7 < 0.8 ps.

The laser works at 1570 nm with a repetition frequency
of 42.8 MHz [Fig. 2(c)]. The onset of the breather soliton
can be implemented through tuning the gain (pump power)
and/or cavity loss (PCs) [13,32]. Here, we present the
results of tuning the pump power to control the breather
soliton. Breather soliton with time-averaged auto-
correlation width of 1.1 ps is obtained when pump power
is in the range of 400-430 mW [Fig. 2(d)].

Figure 3 illustrates the observation of breather solitons
when the pump power is 404 and 414 mW. Figures 3(a) and
3(d) show that the respective spectrum compresses and
stretches synchronously with the pulse energy change (black
line) at a period of ~20 round-trips, which is a distinct
feature of breather solitons. The interferogram evolutions of
the breather soliton are illustrated in Figs. 3(b) and 3(e): the
interference fringes change with the pulse energy synchro-
nously. Then we extracted the continuous 20m round-trip
from Figs. 3(b) and 3(e), shown in Figs. 3(c) and 3(f).
Figure 3(c) exhibits similar periodic evolution as Fig. 3(b) at
a frequency of |f, — f,/20|. By contrast, Fig. 3(f) shows
identical fringe locations, which means f;, = f,/20, i.e., the
breather period is exactly 20 round-trips.

To probe whether all the pulses in a breather period are
locked, we retrieved the time separation 7 and relative
phase ¢ of the adjacent solitons by the DTI. As displayed in
Figs. 4(a) and 4(b), both 7 and ¢ breathe with the intensity
synchronously, proving the rationality to characterize SHE.
Imitating the bound-state configuration in Refs. [28,33], we
assign 7 to the radius and ¢ to the angle to establish the
polar diagram of breather solitons [Figs. 4(c) and 4(d)]. The
points in Fig. 4(d) are locked into 20 discrete positions but
no such order exists in Fig. 4(c). This clearly proves that all
the pulses in the breather are locked when the pump power
is 414 mW. Hence, the SHE with T, = 20T, arises.
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FIG. 4. Retrieved parameters of breather soliton. (a),(b) Evo-
lution of breather soliton when the pump power is 404 mW (a)
and 414 mW (b). The upper curves are the pulse energy
evolution, the middle and the lower curves are the time separation
and relative phase retrieved from interferograms respectively. (c),
(d) Relation of retrieved time separation and relative phase in (a),
(b) over 3000 consecutive round-trips. The radius and angle
represent 7 and @.5t = 7 — 7 represents the change of 7 (7 is a
reference).

The shape difference between Figs. 4(c) and 4(d) is because
of the phase difference from the random jitter of round-trip
time (6 = 276T,/T,, T, is the optical cycle). Moreover,
changing the intracavity parameters by tuning the pump
power and/or PCs, we have also obtained SHE of 16 and 18
round-trips, which is shown in Supplemental Material
[30], Fig. S3.

The evolution of breather solitons was assessed in Fig. 5.
Figure 5(a) exhibits that f;, decreases with the pump power,
in which the plateau represents SHE at 7, = 207 ,. The
data outside the plateau displays nonlinear dependence of
fpo on the pump power, similar to the relation between f
and F? in Ref. [19]. The plateau in Fig. 5(a) proves that the
frequency locking of Eq. (2) arises in the breather soliton
laser. Based on this, it can be deduced that the edges of the
plateau are the EPs, where the non-Hermitian degeneracy
occurs. Additionally, we calculated the frequency spectra of
the breather soliton over 86 000 round-trips at the five red
points in Fig. 5(a), as shown in Fig. 5(d). Compared with
the other spectra, the spectrum at the plateau is smoother
and has much smaller noise. All the spectra, other than that
of the plateau, have small peaks at +5.5 kHz, which may
originate from environmental perturbation or gain jitter.
The breather soliton at the plateau (SHE) is more stable
than the ones out the plateau. Theoretically, the noise in f/,
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FIG. 5. Evolution of breather solitons. (a) f; vs the pump
power. The blue points are the detected frequency, and the gray
curve represents the approximations of f;q. The five red points
are picked to calculate the breather frequency spectrum. (b) The
breather profiles at different pump power in the plateau of (a).
Each profile is averaged over 4300 period. (c) The relative change
of different round-trips in (b). (d) Frequency spectra near the
breather frequency. The five spectra correspond to the five red
points in (a), and the pump power increases from bottom to top.
The y axis is in arbitrary unit and the offset is 15 dB.

can be denoted as 6, = 6,(|6|/V* — 4x* (Supplemental
Material [30], Eq. S3), where 6, is the noise in f,
induced by the jitter of intracavity parameters like gain and
round-trip time. Hence, at the plateau, o, < 0,; if fg is
far from the EPs, 6, = 6,0; near the EPs (|§| > 2«), the
noise increases when f,, approaches the EPs (Fig. S1).
Because the noise from intracavity parameters can only
transmit to f,, but can hardly affect to f, in SHE, the
stability of the breather soliton is significantly enhanced.
The spectrum at the plateau has the narrowest linewidth in
Fig. 5(d), which is evidence of its stability. Therefore, the
SHE between the EPs can remarkably improve the perfor-
mance of the breather soliton, which extends its application
in many areas like the dual-comb source [18]. Moreover, it
is feasible to magnify the noise of a laser using the EPs
theoretically [30], which provides a new way to character-
ize the stability of a laser.

In addition, the breather profiles at the eight plateau dots
are presented in Fig. 5(b), which shows similar breather
profiles. By subtracting the average profile, we obtain
Fig. 5(c), which elaborates the variation of breather profiles
at each round-trip. The largest variation occurs at round-trip
20, but is still less than 5% of the pulse intensity. With
increasing pump power, the pulse energy in the falling edge
increases monotonically, but in the rising edge it does not:
from the third to the eighth round-trips, the pulse energy
initially increases, and then decreases with pump power.
Thus, the energy has been reassigned, which introduces a
slight change to the breather profile. This may result from
the variation in the imaginary part of f,.

To further interpret the SHE, we developed a piecewise
numerical propagation model. The propagation in fibers
follows the coupled nonlinear Schrodinger equations [34]:

2

where u,, are the envelopes of the pulses along the two
orthogonal polarization axes of the fiber, y is the non-
linearity coefficient, g, = g — a is the net gain, and « is the
loss. The gain g = gyexp(—E,/2E,) [35] for EDF and
zero for SMF, where g, is the small signal gain, E| is the
pulse energy, and E, is the saturation energy. The gain
bandwidth 2, = 50 nm. The total transmission aypg of the
NPR system can be expressed as [36]

cos 6 cos 6,
ONPR =

cos 0, sin 0, exp(ifs) ) )
sin @, cos 6, )

sin 6, sin 8, exp(if3)

Here, 0, , are the angles between the transmission direction
of PDI and fiber eigenaxis of out- and in-PDI, and
0; is the phase mismatching of two polarization
directions. In our simulation, the transmission of OC
apc = 0.4, y =2 W~ !/km, a = 0.2 dB/km, Ey, = 8 nJ,
0, =45 deg, gy = 2, 63 = 4.5 rad, the breather soliton is
obtained in the range 64 < 6, <71 deg, and its frequency
is controlled by 0,. We present the peak power evolution
of the breather soliton over 3000 round-trips at
0, = 68.25 deg [Fig. 6(a)] and 68.35 deg [Fig. 6(b)].
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FIG. 6. Simulation of SHE breather soliton. (a),(b) Peak power
evolution over 3000 round-trips in the free-running (a) and SHE
(b) cases. x(y) axis represents the peak power at the m (m + 1)
round-trip. (c) Breather frequency f;, vs 0,. (d) f} vs fio- The
blue dots are obtained from the simulations, and the red line is the
fit using Eq. (2). (e) The close-up of (d) at the vicinity of the
plateau. The red line is the parabolic fit of the blue dots.
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In Fig. 6(b), the points are constrained in 20 discrete
positions but the points in Fig. 6(a) are free to form a closed
curve, which certifies the SHE when 6, = 68.35 deg.

Figure 6(c) indicates that f;, monotonically increases
with 6,, which enables us to calculate f;, near SHE. This is
inaccessible in experiments because the breather soliton
sustains much shorter range by tuning the pump power. The
breather frequency evolution near f,/20 is shown in
Fig. 6(d), which fits well with Eq. (2) (the red line is
the fitting). Figure 6(d) delivers similar SHE property as
predicted in Ref. [19], but our simulation is achieved in
mode-locked lasers. Furthermore, in Fig. 6(e) (the red line),
near the EPs, the breather frequency approaches the EPs
parabolically, which is a peculiar feature of the EPs.

Our simulations ascertain that the SHE behavior is a
general phenomenon. The fittings in Figs. 6(d) and 6(e)
highlight that the SHE breather soliton arises at the
frequency locking between the two EPs. The noise from
the gain or the environment can be transmitted to f,
which induces the instability of breather soliton. But
because of the coupling, the SHE obstructs the noise
transmission from [y to f}; therefore, the SHE can
stabilize the breather soliton. Reciprocally, the stability
of f;, can help to distinguish whether the breather soliton is
in SHE, which is also effective in Kerr-nonlinear micro-
resonators. In this way, the repetition frequency that is too
high (beyond 100 GHz) to be detected directly, can be
measured through f, by tuning the system into the SHE
state (judged by noise).

In conclusion, we reported the first observation of SHE
breather soliton in a mode-locked laser. This can help to
measure the ultrahigh pulse-repetition rate that is electroni-
cally inaccessible [19]. Moreover, we have proved that the
SHE behavior can enhance the stability of breather solitons,
and provided a feasible way to improve the performance of
dual-comb sources [18]. Furthermore, by building a non-
Hermitian degeneracy model of breather soliton system, we
introduced EP physics into the mode-locked lasers, which
would attract research attention to such novel phenomena,
and initiate a new course of ultrafast dynamic study. We
believe this dynamical synchronization will have widely
applications, especially in femtosecond pulse synthesis and
frequency-comb generation.
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