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Phase-Preserving Linear Amplifiers Not Simulable by the Parametric Amplifier
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It is commonly accepted that a parametric amplifier can simulate a phase-preserving linear amplifier
regardless of how the latter is realized [C. M. Caves et al., Phys. Rev. A 86, 063802 (2012)]. If true,
this reduces all phase-preserving linear amplifiers to a single familiar model. Here we disprove
this claim by constructing two counterexamples. A detailed discussion of the physics of our counter-
examples is provided. It is shown that a Heisenberg-picture analysis facilitates a microscopic explanation of
the physics. This also resolves a question about the nature of amplifier-added noise in degenerate

two-photon amplification.

DOI: 10.1103/PhysRevLett.125.163603

Introduction.—Linear amplification has long been an
integral part of quantum measurements whereby a weak
signal is amplified to a detectable level [1,2]. Because of
advances in quantum optics and quantum information,
linear amplifiers are now also seen as a facilitating
component of many useful tasks such as state discrimina-
tion [3], quantum feedback [4], metrology [5], and entan-
glement distillation [6,7]. New paradigms of amplification
such as heralded probabilistic amplification [3,6,8,9] and
photon number amplification [10] are being actively
researched for these and other applications.

Much attention has been given to the application and
construction of linear amplifiers [1,2], and their fundamen-
tal quantum noise limits have been known for a long time
[11]. A relatively recent foundational development, how-
ever, is the claim that a parametric amplifier can simulate
any phase-preserving linear amplifier regardless of how it is
realized [12]. This statement is significant as it replaces the
set of all phase-preserving linear amplifiers by a single
familiar model. Either proving it or falsifying it is thus of
fundamental importance to our understanding of determin-
istic amplifiers. It would also clarify the status of the
parametric amplifier (henceforth abbreviated as paramp).
More specifically, is it possible to find phase-preserving
linear amplifiers which cannot be simulated by the paramp?
If so, what differentiates such amplifiers from those that can
be simulated by the paramp?

In this work, we provide answers to these questions. We
provide as counterexamples two families of physically
realizable linear amplifiers which are phase preserving but
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cannot be simulated by the paramp. The inner workings
of such amplifiers are then studied, revealing that the

physical mechanism of multiplicative noise leads to ampli-
fiers that are not simulable by the paramp. This delineates
the boundary and status of the paramp in linear-amplifier
theory. Our main result is summarized in Fig. 1. As a
corollary, we also gain understanding on the nature of noise
in nonlinear amplifiers.

Definitions.—We begin by making the above statements
precise. We specify an amplifier by a map A which
transforms the state of an input signal p;, to a new state
at its output, py, = Ap;,. Throughout this Letter the signal
itself will be represented by the single-mode bosonic
annihilation operator a acting on Hilbert space Hy. An
amplifier is said to be (i) physical if A is completely

B==2

(@) (b)

FIG. 1. A denotes the set of all phase-preserving linear
amplifiers [defined by (i)-(iii)] while those that are paramp
simulable are in B [colored in orange, see (2) and (3)]. The
amplifiers A;, A,, and A5 are defined by generators given in (1),
(4), and (12), respectively. (a) Accepted status of the paramp:
A =P [12]. (b) Result of this Letter: P ¢ 2A.
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positive and trace preserving, (ii) linear if A is such
that (a)., = Tr[aAp;,| = g{a);, for all py,, (iii) phase
preserving if the gain g is real valued. We denote the set
of amplifiers satisfying (i)—(iii) by 2 [13]. A member of 2
is given by A, () = exp(L,t), where

L, =y D[a’] +«,Dlal, Ky >k >0, (1)
and DIAJB=ABA" —ATAB /2 - BATA/2. By virtue of
its Lindblad form, (1) generates a family of completely
positive trace-preserving maps {.A, ()}, for fixed x4 and x|
[17,18]. This is the familiar master equation model of a linear
amplifier [19-23]. It is not too difficult to show that A, (7) is
linear and phase preserving for any ¢ [22].

Parametric amplifier.—The paramp is a device with an
internal degree of freedom represented by the bosonic
annihilation operator b acting on Hp. Its initial state is
denoted by 6. The paramp map £ is defined via the two-
mode squeeze operator S = exp|[r(ab—a*h")] as

Pout = gpin = TrB[S'(pin 02 U)ST]’ (2)

where Trp denotes a partial trace over Hp. The gain of
the paramp may be shown to be G = cosh r, where r is the
squeezing parameter [12]. This finally brings us to the
universality claim of the paramp [12]: Given any physical
linear phase-preserving amplifier A, one can always find a
o and G of the paramp such that its output state is identical
to the output state from A for any input p;,, i.e.,

36.G: E=A. Y A€ (3)

If we denote the set of amplifiers that are paramp simulable
by B, (3) states that P = 2 [shown in Fig. 1(a)].

Counterexamples.—We consider first the family of maps

A, (1) = exp(L,t) generated by

£, =L (0@ + Dla)),
Again, by virtue of its Lindblad form, {A,(¢)}, is a
physically valid family of maps for a fixed y. Consider a
particular member of this family .4, = exp(L,?,) for some
choice of fy. A straightforward calculation shows that
this produces a linear amplifier (a),, = g{@);,, where
g = exp(yto). This establishes that A, € 2.

For the paramp & to be equivalent to A,, it is necessary
that the moments of a at the output from both amplifiers be
identical for an arbitrary input state p;,. Here we show that
this cannot be satisfied by considering the output amplitude
and photon-number averages corresponding to £ and A,.
For A, they are [14]

y > 0. (4)

in’

<&>0ut - g<&>in’ (5)
(o = 0 + L )

where 7 = a'a. The same quantities for the paramp are [12]
(@)ou = Gla)i + VG* = 1(D), (7)
(A)ou = G*(A)in + (G* = 1)(bD"), (8)

where all moments involving b are taken with respect to its
internal state o while those involving & are taken with respect
to p;,. To ensure that the two amplifiers give identical (a),,,
for any p;,, we must choose (b) = 0 and set G = g. Now
consider an input signal prepared in some state, say p;, with
average photon number (71),. It is necessary that A, and £

output the same photon number when applied to py, i.e.,

g -1 Ry

5= =)+ (g7 = 1)BbY). (9)
Similarly, we may consider another input state p, with a
different average photon number (fi),. The same require-
ment leads to

g (), +

oL g =1 X pi
g )y +=—5—= (R + (¢* = 1)(bb').  (10)
Subtracting (10) from (9) we get
g'l(A)y = (A),] = g[{A), = ()] (11)

Equation (11) clearly cannot be satisfied unless g = 1 = G
(which means no amplification). Thus, the paramp cannot be
auniversal model for 2. Note that it is the difference in how
(1) o Scales with g in the two types of amplifiers that makes
& # A,. To the best of our knowledge, this is the first time
that a phase-preserving linear amplifier has been shown to
fall outside the reach of the paramp.

It is natural to wonder whether the family of amplifiers
{A,(1)}, is something of a special case. Another family of
counterexamples {A3(z)}, with Az(r) =exp(Ls3t) is
derived from the generator

£y = L (D] + Dla®) + yDla?)
Physical realizability follows immediately from the
Lindblad form of (12), while properties (ii) and (iii) are
shown in Ref. [14]. We have chosen the coefficients in (12)
so that A3 (7) has the same gain g = exp(y?) as A, (7). In this
case a simple analytic expression like (6) cannot be found for
its average output photon number. It is nevertheless possible
to show that A;(¢) leads to an average output photon number
which is irreproducible by the paramp [14].

It is worth noting that our counterexamples use nonlinear
processes to arrive at a statement about one that is linear.
They illustrate how nonlinear processes in Lindblad form
provide more freedom in modeling physical systems that is
often overlooked. Another example where a nonlinear
process in Lindblad form is put to good use is Ref. [24].
The present paper, and Ref. [24], suggest that such non-
linear terms in Lindblad form deserve more attention in
modeling work than what has been received thus far.

y>0. (12
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Physical properties.—We now turn to the question of
what differentiates amplifiers which are paramp simulable
from those that are not. A hint is provided by the nonlinear
dependence on & and &' seen in £, and L5, suggesting that
the physics separating paramp simulable and unsimulable
amplifiers might have something to do with multiphoton
processes. To tackle this question we focus on the family of
counterexamples defined by £,, which involve two-photon
processes.

To start, we note that £, in fact appears as a special case
of the so-called (degenerate) two-photon amplifier with the
master equation [25,26]

d
2P0 =& Dlap(0) + xy Dl@lp(r).  (13)
This equation was derived from first principles starting
from an atom-photon Hamiltonian with two-photon inter-
actions by Lambropoulos in which «; and « are further
related to microscopic quantities [27]. Here, it suffices to
express them as x4 = yny and k = yny, where y is an
effective atom-photon coupling strength while ny and ny
are the fractional atomic populations in the excited and
ground states, respectively. Two-photon amplifiers have
been widely studied for some time [25,26,28-38] and their
output photon statistics have been intensively studied for
the model of (13) and special cases of it [25,26]. Already in
Ref. [25], Lambropoulos noted that linear amplification,
i.e., one-photon gain, was somehow possible with £, upon
setting kq =k = y/2 in (13) despite the amplifier being
described by an inherently two-photon model [see Sec. V C
of Ref. [25]. Also compare his (5.9b) and (5.9¢) with our (5)
and (6)]. To explain this he postulated that the amplification
had to involve a “half noise half signal” process, originating
from two-photon emissions whereby “the emission of one of
the photons is induced and the other spontaneous” [39].
However, to the best of our knowledge, this assertion has
remained unsubstantiated to date. If we are able to affirm the
speculated mechanism underlying £,, we would not only
have validated Lambropoulos’s conjecture, but will also be
guided to what kind of physics prevents a phase-preserving
linear amplifier from being simulable by a paramp. As we
now explain, £, can be understood in terms of the elemen-
tary atom-photon interactions shown in Fig. 2(b).
Attempts to understand the photon statistics of the two-
photon amplifier naturally treat the density operator of the
signal mode & as a central object of analysis, and thus work
in the Schrodinger picture. This is a major drawback in
understanding the noise mechanism because the internal
modes of the amplifier noise are traced out in such a
description [25]. We are therefore motivated to work in
the Heisenberg picture where the amplifier noise appears
explicitly as a time-dependent operator. This will allow us to
track how the noise arises at the output and arrive at Fig. 2(b).
Before we analyze A,(7) in the Heisenberg picture, it is
instructive to review how such an analysis works for the

(a) (b)
wo A AW W
Wo MWW MW=
W Wo

FIG. 2. Fundamental atom-photon interactions in .4,(¢) and
A, (t) with all photons assumed to have frequency wg. Photons
emitted spontaneously (i.e., noise photons) are shown in blue while
stimulated ones (i.e., signal photons) are in red (with the input
signal photon shown in black). (a) .4, (¢). Stimulated emission (top
left), spontaneous emission (top right), and absorption (bottom).
(b) A, (). Left: singly stimulated emission where a two-photon
emission occurs as a cascade of stimulated and spontaneous
emissions. Right: two-photon spontaneous emission. Two-photon
absorption and stimulated emission events (not shown) occur at the
same rate when x4 = k) and do not provide net gain [14].

example of A, (). Its Heisenberg-picture equivalent for the
signal a(r) can be shown to be given by [14,40]

da(t) = = (ky —x))a(t)dt + dW(1), (14)

| —

where  d§(1) =5§(r+dt) —§(r) for arbitrary  §(z).
Equation (14) may be derived from a familiar model of
the field interacting with a two-level atom. In this case, k4
and k| are the effective excited-state and ground-state
populations in an atomic gain medium that implements
one-photon interactions. The term dW(f) is a quantum
Wiener increment and represents the noise being added to
the signal as it is being amplified according to (14). It is an
atomic operator that is independent of the signal and has
zero mean. All its higher-order moments vanish except the
second-order ones given by the quantum Itd rules [40—45]:
dW(1)dW(t) = Ky dt, dW(t)dW' (1) =k dt.  (15)
Since we are now working explicitly in continuous time,
the input and output signals are to be identified as @(0) and
a(r), respectively. Applying quantum Itd calculus, (14) can
be shown to satisfy [a(7), a*(1)] = 1 for all 7, as required in
order to be consistent with quantum mechanics.

The advantage of (14) is that it allows us to see how
the noise contributes to the amplifier output explicitly. In
particular, we can extract some basic physics about the
amplification of a by considering the evolution of the
average photon number:

d(i(t)) = (ky — ) )(a(1))dt + AW (1)dW (1) (16)

= (ky — &) (A(1))dt + Ky dt. (17)
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The first two terms in (17) show that population inversion in
the gain medium is necessary for a positive contribution to
the signal’s energy, i.e., for amplification. The third term
given by k4 comes directly from the noise operator dW(t)
and represents noise photons added to the signal.
Furthermore, each term in (17) can be understood to
correspond to an elementary atom-photon interaction (i.e.,
stimulated emission, absorption, or spontaneous emission)
[22,46]: The first term is proportional to both the intensity of
the light reaching the atom (/i(¢)) as well as the effective
atomic population of the excited state x4 and corresponds to
stimulated emission. Similarly, we know that the number of
absorption events in the gain medium should be proportional
to (i1(r)) and the effective ground-state population of the
atoms. This corresponds to the term —x (7(¢)) in (17) where
the negative sign indicates that absorption removes energy
from the field. The only atom-photon interaction that does
not depend on the signal’s energy, but only on the excited-
state population of the gain medium, is spontaneous emis-
sion, and is given by the last term in (17). This highlights the
well-known facts about linear amplifiers that rely on single-
photon interactions: First, that stimulated emission and
population inversion are essential for amplification, and
second, that spontaneous emission is the physical mecha-
nism responsible for adding noise to the signal. A summary
of these processes is shown in Fig. 2(a).

The Heisenberg-picture equation for a corresponding to
the two-photon amplifier of (13) is [14]

da(t) = (kq —ky)a’(1)a*(r)dt
+2kqa(t)dt + a' (1) dW (). (18)

This is an Itd quantum stochastic differential equation
[47-51] where dW(¢) is again an atomic operator with zero

mean and such that

AW (1)dW (1) =4kedt,  dW(t)dW' (1) =4kydt.  (19)
Again, it can be shown that (18) preserves [a(1), a'(1)] = 1
for all ¢ [14]. The Heisenberg equation of motion for a

corresponding to £, may then be obtained from (18) by
setting ky = k. = y/2. This gives

da(t) = ya(r)dt + a*(1)dW(r). (20)

Note here that (20) now carries a signal-dependent noise
given by a'(t)dW(t). This is the “half signal half noise”
which Lambropoulos spoke of in Ref. [25]. It is also
referred to as multiplicative noise in random process theory
[52,53]. We can now show exactly what the multiplicative
noise in (20) is in terms of elementary atom-photon
interactions by considering how the average photon num-
ber evolves. Using quantum It6 calculus, we have

d(a(1)) = 2y(a(0)dr + (a()a’ (1) dW' (1) aW () (21)
= 2y(a(t))dt + 2y[(A(t)) + 1]dt. (22)

The first term in (22) is inherited from the yéa(t)dt term in
(20) and corresponds to one-photon stimulated emission as
it depends on x;, and (71(¢)). Since the model restricts the
atoms to have only two-photon transitions, this term by
itself does not complete a full atomic transition from
excited to ground state with the emission of two photons.
To complete the picture we must take into account the
photons from the remaining terms in (22), which are noise
photons insofar as they arise from the atomic operator
dW(t). In contrast to (17), there are now two types of noise
photons. The first is linear in {7(¢)), so it corresponds to a
one-photon emission that depends on the signal strength
reaching the atom. The fact that it is a noise photon
suggests that it came from spontaneous emission while
the fact that it depends on the signal means that such a
spontaneous emission is “stimulated”—conditioned on a
stimulated emission having taken place just before it. The
seemingly strange possibility of getting one-photon ampli-
fication in a two-photon model can now be resolved when
we take the stimulated photon corresponding to the first
term in (22) together with the signal-dependent noise
photon to arrive at the two-photon process shown on the
left of Fig. 2(b). This is the underlying mechanism
responsible for linear (i.e., one-photon) amplification in
a gain medium with only two-photon transitions. The
remaining type of noise photon is due to the 2y in (22),
which corresponds to two-photon spontaneous emission.
This is shown on the right in Fig. 2(b).

Our physical picture of the multiplicative noise in (20)
thus allows us to see how it is signal dependent. It is
precisely this signal-dependent noise that leads to a photon-
number gain of ¢* in (6) which ultimately makes it
impossible for the paramp to simulate it as shown in
(11). This can be seen explicitly from (22) where the first
term contributes photons at a rate 2y(fi(t)) to the signal,
while the signal-dependent noise contributes another
2y(a(t)) photons per unit time to make up a total rate of
4y(i(r)) [which leads to the fourth power of g in (6) and
subsequently in (11)]. Because (20) is the simplest form of
a phase-preserving linear amplifier with multiplicative
noise, it may be expected that other such amplifiers with
more complicated signal-dependent noise can also violate
(3), as we showed with A;(¢) from (12).

We note that nondegenerate variants of the left-hand
picture in Fig. 2(b) (i.e., a two-photon emission with
unequal transition frequencies) have been observed in
experiments and are known in the literature as singly
stimulated emission [54-56] (see Ref. [28] and the
references therein for more details). What we have done
in this section on the physical properties of our counter-
examples is to (i) show that multiplicative noise prevents a
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phase-preserving linear amplifier from being paramp sim-
ulable and (i) explain the physical basis of this multiplica-
tive noise in terms of elementary atom-photon interactions.

It is also possible to interpret (20) and its associated
linear amplification purely from the perspective of quantum
stochastic processes. In this interpretation (20) is under-
stood to generate linear amplification as a result of the
correlations between the amplifier-added noise and the
signal. This follows from the Stratonovich form of (20)
which is derived in Ref. [14]. Such a process may in
principle be realized using ion traps [14].

Finally, our discussion above sheds light on how A,
evades the claimed proof of the universality of the paramp
model in Ref. [12]. The authors of Ref. [12] mathematically
characterize a phase-preserving linear amplifier as a
composition of a perfectly noiseless (and unphysical) ampli-
fier with a noise map that restores physicality [57]. Crucially,
this added noise was taken to be signal independent, thus
excluding multiplicative noise of the kind found in A, by fiat.
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