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Phase matching refers to a process in which atom-field interactions lead to the creation of an output field
that propagates coherently through the interaction volume. By studying light scattering from arrays of cold
atoms, we show that conditions for phase matching change as the dimensionality of the system decreases.
In particular, for a single atomic chain, there is phase-matched reflective scattering in a cone about the
symmetry axis of the array that scales as the square of the number of atoms in the chain. For two chains of
atoms, the phase-matched reflective scattering can be enhanced or diminished as a result of Bragg
scattering. Such scattering can be used for mapping collective states within an array of neutral atoms onto
propagating light fields and for establishing quantum links between separated arrays.
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Beginning with the pioneering demonstrations of sec-
ond-harmonic generation [1,2] and photon echoes [3],
phase matching has played a critical role in nonlinear
and quantum optics. When N atoms are excited in free
space, collective emission can result in a number of ways,
some of which are discussed by Dicke [4] in his seminal
paper. One type of collective emission, which we refer to as
superradiance, is produced when two-level atoms are
prepared in a completely inverted or phase-matched initial
state in an ensemble for which the so-called cooperativity
parameter is greater than or of order unity. A second type of
collective emission, on which we focus here, is simply
phase-matched emission from an array of noninteracting
atoms, that is, a limiting case where the field radiated by a
given atom has a negligible effect on the dynamics of the
other atoms. This is the type of interference effect typically
encountered in optical coherent transients [5]. Yet a third
type of collective emission is somewhat of a hybrid of the
first two. Atoms are prepared in a collective, phased single-
excitation state using a single-photon pulse [6–8]. The
atoms do not acquire a dipole moment, but the emission
pattern can mirror that of phase-matched emission. In this
and related schemes in which the dimensions of the
excitation volume are large compared with the wavelength
of the excitation field(s), the k vector of the phase-matched
emission satisfies a momentum conservation condition
involving the k vectors of the excitation fields. For
example, in a four-wave mixing process with incident field
k vectors k1, k2, and k3, a possible phase-matched
outgoing field propagates in the ks ¼ k1 − k2 þ k3 direc-
tion. The signal results from an average over the distribu-
tion of positions of individual atomic emitters and does not
require a specific spatial arrangement of the atoms in the
sample, in contrast to Bragg scattering.
In an experimental situation involving a single cw exci-

tation field incident on a low density atomic vapor, collective

scattering still occurs, but its signature is very different from
that in the four-wave mixing experiment. The collectively
scattered light is phase matched only in the direction of the
input field and it interferes with the incident light to diminish
the incident field’s intensity. In order to get constructive
interference in other directions, a specific atomic array is
needed, rather than a disordered vapor. This type of collective
emission is nothing more than Bragg scattering and it has
been demonstrated using chains of trapped ions [9–11], two-
dimensional Mott insulators [12], and ensembles of atoms in
1D and 3D lattices [13,14]. In Bragg scattering, it is necessary
to localize each emitter to well within the wavelength of the
incident radiation. Deviations from perfect localization wash
out any constructive interference and reduce the fidelity of
associated quantum protocols.
Diverse applications of quantum information require

interconnected quantum nodes that are capable of local
processing and error correction. Integration of local
processing and memory enhances performance of quantum
repeaters over lossy channels, enables distributed quantum
processing and sensing, and allows for entanglement
resources to be shared within the network. In prior work
with a single atomic qubit per node, entanglement between
an atomic qubit and a photon [15–18] and entanglement
between remote atomic qubits [19–21] have been realized.
High-fidelity one-qubit gates [22,23] and pairwise
entanglement of neighboring and next-to-nearest neighbor
sites [24,25] in 1D and 2D arrays have also been demon-
strated. However, the integration of communication and
processing capabilities remains an outstanding challenge.
High-quality interference for light emitted from a reconfig-
urable array of trapped neutral atoms is essential for using
such arrays in a way that combines processing and mapping
between atomic and photonic states [26].
In this Letter, we propose and demonstrate noncollinear

phase-matching geometries that have suppressed sensitivity
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to particle localization. In the first geometry, there is a
single atomic chain whose axis makes a small angle θexc
with the propagation vector of the incident field [Fig. 1(a)].
In the second geometry, two atomic chains are used to
observe interference fringes having near-unity visibility.
The ability to obtain high-quality phase-matched scattering
from an array of individually controllable atoms represents
an important step toward the realization of scalable atom-
photon interfaces.
The central idea for achieving this goal is the observation

that, as the dimensionality of the system decreases, new
directions for phase matching appear even for a disordered
atomic array. The origin of this effect can be understood by
considering a structure factor Sðθ;ϕÞ ¼P

N
j;j0¼1

e−iΦjj0 for
scattering of off-resonant radiation from independent
atoms. The scattered intensity is proportional to S, with

Φjj0 ¼ kXjj0 ðsin θ cosϕþ sin θexcÞ þ kYjj0 sin θ sinϕ

þ kZjj0 ðcos θ − cos θexcÞ;

being an overall phase for the scattering, kexc ¼
kð− sin θexcx̂þ cos θexcẑÞ the incident field propagation
vector, ðθ;ϕÞ polar and azimuthal scattering angles, Rj ¼
Xjx̂þ Yjŷ þ Zjẑ the position vector for atom j, and
Rjj0 ¼ Rj −Rj0 . For phase matching from a disordered
atomic array, the phase Φjj0 must vanish for allRjj0 . In three
dimensions, phase matching is possible only in the direc-
tion of the incident field ðθ ¼ θexc;ϕ ¼ πÞ. However, if the
atoms are confined to the y − z plane, there is perfect
reflective phase matching in the plane of incidence pro-
vided θ ¼ θexc and ϕ ¼ 0. If the dimensionality is further
reduced to a chain of atoms along the z axis, there is phase
matching in a cone with polar angle θexc. Deviations from
perfect phase matching arising from excursions out of the
plane or chain can be reduced by taking θexc ≪ 1.

We first consider an ideal situation in which N atoms are
confined to a one-dimensional chain in the z direction with
fixed spacing d between the atoms. In this limit, as
illustrated in Fig. 1(b) for our experimental parameters
(d ≈ 7.49 μm, λ ≈ 780.24 nm, θexc ≈ 4°), there is construc-
tive conical collective scattering for several values of θ
satisfying the Bragg condition. In our experiment, the
confinement and separation of the trapped atoms is some-
what disordered, owing to imperfect positioning of the
traps, finite atomic temperature, and random filling of trap
sites. When effects of atom position deviations along the z
axis are included, the number of Bragg scattering cones
diminishes, Fig. 1(c). Nonzero values of Xj and Yj further
restrict the emission pattern to a single cone about the
symmetry axis having maxima at ϕ ¼ 0, ϕ ¼ π, Fig. 1(d)
and Supplemental Material [27].
We use cold 87Rb atoms confined in an array formed by

holographic optical microtraps. Once N atoms are prepared
in an array containing Nt traps, we image these atoms to
determine the number of traps that are filled. We then apply
a magnetic field of B ≈ 2.0 G along the excitation laser axis
and employ a gated probing-cooling sequence. During this
sequence, the excitation laser and cooling beams are
switched on and off in an alternating manner with durations
of 0.9 ms and 2.2 ms, respectively. The scattered light is
detected with an avalanche photodiode (APD) gated
on only during the excitation period. The excitation laser,
propagating along the magnetic field, is σþ polarized
and red detuned by δ=ð2πÞ ≈ 62 MHz from the jgi ¼
j5S1=2; F ¼ 2;mF ¼ 2i↔ jei ¼ j5P3=2; F0 ¼ 3;mF0 ¼ 3i
transition. The beam waist of the excitation laser is
∼0.1 mm. The scattered light is collected by an achromatic
doublets lens with focal length f ¼ 150 mm and coupled
into a single-mode fiber directed toward the APD. The
detector axis has polar angles ðθdet; 0Þ, see Fig. 1(a). The
detection mode has a waist of ≈13.3 μm. After a total of

(b)(a) (c) (d)

FIG. 1. Bragg scattering from a one-dimensional atomic chain. (a) A linear chain with N ¼ 10 atoms separated by d ¼ 7.49 μm is
aligned along the z axis. An excitation laser with wave vector kexc is directed onto the chain at an angle θexc ¼ 4° with respect to the z
axis. The scattered light with wave vector k is detected as a function of spherical angles ðθ;ϕÞ. (b) Structure factor Sðθ;ϕÞ for equal
separation of atoms, and (c) in the presence of disorder of atomic positions with standard deviations ðσx; σy; σzÞ ¼ ð0; 0; 0.3λÞ, and
(d) ðσx; σy; σzÞ ¼ ð0.3λ; 2.4λ; 0.3λÞ. Gray panels represent the x-z plane in which the excitation laser propagates. To measure the
scattered signal, we use a detector whose axis has polar angles ðθdet; 0Þ.
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1200 cycles of the gated probing-cooling sequence with
repetition rate of ≈300 Hz, an additional imaging of the
traps is taken to determine the final number of atoms Nf in
the array. For the data analysis, only experimental samples
with Nf ¼ N are postselected to remove atom loss effects.
We repeat this entire sequence in determining a photon
count rate averaged over atomic configurations in the array
for a given N.
In the first geometry, we use a linear chain with Nt ¼ 20

traps separated by d ≈ 7.49 μm. To experimentally find a
reflective phase-matching condition, both θdet and θexc are
varied by rotating the chain axis with θ0 ¼ ðθdet þ θexcÞ=2
kept fixed at ≈4°. Figure 2(a) displays averaged fluores-
cence images of the chain for three different θdet. For
θdet ¼ 0° (left image) the chain is oriented along the
detection mode, while for θdet ¼ 2θ0 ≈ 8° (right image)
the chain is aligned along the axis of the excitation field.
Reflective phase matching is expected to appear when
θdet ¼ θ0 ≈ 4° (middle image). The measured photon
count rates as a function of θdet for various N are shown
in Fig. 2(b), where the horizontal axis is zeroed within the
calibration error of �0.11°. We observe an enhanced
photon count rate, attributed to the reflective phase-
matched emission, for each N at around the expected
value of θdet.
The experimental data are offset from the background

signal [represented by the black dotted lines in Fig. 2(b)].
The origin of this offset can be traced to (1) deviations from
perfect periodicity of the trap potentials, (2) temperature
effects, (3) random filling of the traps, and (4) inelastic
scattering of the incident field [32].
For our experimental conditions, the theoretical expres-

sion for the scattered light intensity in steady state can be
written as

IðrÞ ∝ jFscðrÞj2
�XN

j

ρðjÞee þ
XN
j≠j0

ρðjÞge ρ
ðj0Þ
eg e−iΦjj0

�
; ð1Þ

where Fsc is a σþ dipole radiation field amplitude, ρðjÞee is an
excited state population, and ρðjÞge denotes the single atom
coherence between jgi and jei. Both ρðjÞee and ρðjÞge are
obtained as a function of the Rabi frequency Ω and detuning
δ from the solution of the steady-state optical Bloch
equations. We do not measure the intensity per se, rather
we measure the absolute square of the scattered field
amplitude projected onto the detection mode (see
Supplemental Material [27]). To include the effects of
disorder, we compute a signal averaged over different atomic
configurations. For N atoms and Nt traps, a specific
configuration is obtained by placing each atom at random
in the traps, with at most one atom in each trap. The
displacement of atomic positions originates from imperfect
positioning of the traps and from the finite temperature T. In
these simulationsΩ and θ0 are taken to be free parameters to
fit the data for 2 ≤ N ≤ 15. We obtain Ω=ð2πÞ ¼
3.24ð4Þ MHz and θ0 ¼ 4.19ð2Þ° without the calibration
error. The results of the numerical simulations, displayed
as solid lines in Fig. 2(b), successfully reproduce the entire
shape of the observed signal.
Under conditions of phase matching, the relative

phase Φjj0 is insensitive to position disorder along the y
and z axes, that is ∂Φjj0=∂Yjj0 ¼ ∂Φjj0=∂Zjj0 ¼ 0.
Therefore, random filling of the traps by the atoms does
not affect the peak signal. However, there is a small
sensitivity of the peak signal to displacements along
the x axis, since ∂Φjj0=∂Xjj0 ¼ 2k sin θ0 ≡ qx. Therefore,
even for fully coherent scattering, averaging of the peak
signal with a Boltzmann distribution of positions in the
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FIG. 2. Phase-matched emission from a single chain. (a) Averaged atomic fluorescence images of a linear chain containing Nt ¼ 20
traps. The left image shows a configuration in which the atoms are aligned along with the detection mode axis, i.e., θdet ¼ 0°. For the
middle (right) image, the chain is prepared such that θdet ≈ 4°ð8°Þ. (b) The measured photocount rate as a function of θdet for N ¼ 4, 8,
12. Each point is an average of randomly filled chains with a given N. Error bars represent one standard deviation of the observed
photoelectric counting events. The green lines are the numerical results based on a Monte Carlo simulation with 1000 runs. The shading
on the line represents the standard deviation of the simulation divided by the square root of the averaged number of trials in the
experiments. (c) The peak count rate as a function of N. Each point and its error bar represent the observed value at θdet ¼ θ0 ¼ 4°. For
the single-shot measurement of N ¼ 15, we associate a

ffiffiffiffiffi
M

p
Poissonian error for M photoelectric count events. The solid (dashed) line

represents the numerical simulation with (without) displacement of atomic positions due to imperfect positioning of the traps and finite
temperature effects. The black dotted lines in (b),(c) show the detection background measured without loading atoms.
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x direction reduces the structure factor from N2 to
fDWN2 þ ð1 − fDWÞN, where fDW is a Debye-Waller
factor [33] given by he−iΦjj0 i ≈ e−q

2
xσ

2
x and h� � �i denotes

the average over the Boltzmann distributions. In Fig. 2(c)
the observed peak count rate (red points) is displayed
together with a theoretical curve for an equally spaced
chain without any position disorder (dashed line). The fact
that the curves almost overlap is consistent with the Debye-
Waller factor of fDW ≈ 0.93. The maximum scattered
intensity is also diminished by an N independent factor
of about 10% resulting from the projection onto the
detector mode.
In the second geometry, we extend the system to two

chains, each composed of Nt=2 ¼ 20 equally spaced traps.
The chain axes are chosen to satisfy the reflective phase-
matched condition θdet ¼ θexc ¼ θ0 measured in the first
geometry. The two chains are separated by a distance L⊥ in
the direction orthogonal to the detection axis that is chosen
equal to the spacing d between the adjacent traps [left
image in Fig. 3(a)]. To observe interference of reflective
phase-matched emission from the two chains, each chain is
displaced by Lk=2 in the direction away from each
other along the detection axis [middle and right images
in Fig. 3(a)]. Therefore, the shortest distance between the
two chains can be written by L ¼ Lk sin θ0 þ L⊥ cos θ0.
Figure 3(b) displays the measured photon count rates as a

function of the chain separation Lk for N ¼ 8; 12; and 16.
These results show constructive and destructive Bragg
scattering, and they are analyzed using sinusoidal fits.
These interference fringes provide information about geo-
metrical parameters of the experimental setup. According
to Bragg’s law: 2L sin θ0 ¼ mλ, the expected interference
period is ΔLk ¼ λ=ð2sin2θ0Þ and mth order constructive
emission appears at LðmÞ

k ¼ mΔLk − L⊥ cot θ0. Taking into
account the observed period and second order peak

position ðΔLk; L
ð2Þ
k Þ ¼ ½10.56ð5Þ; 6.92ð2Þ�d averaged over

5 ≤ N ≤ 23, we obtain d ¼ 7.49ð11Þ μm and
θ0 ¼ 4.01ð4Þ°. The solid lines in Fig. 3(b) are the results
of the numerical simulations with the obtained values
of d; θ0.
In Fig. 3(c) we show the measured interference visibility

V ¼ ðImax − IminÞ=ðImax þ IminÞ as a function of the total
number of atoms N. When averaged over the range
20 ≤ N ≤ 23, the background-subtracted V we obtain is
0.97(2), significantly higher than that reported in prior
studies of multiatom Bragg scattering [9–14]. The clear
reduction in visibility for smaller numbers of atoms N is
due mostly to an increased imbalance in the atom number
between the two chains. It can be understood as follows:
for constructive interference, the relative phase Φjj0 is zero
for any two atoms in the same chain and a multiple of 2π for
any two atoms in different chains. Therefore the maximum
fringe intensity Imax is insensitive to an imbalance in the
number of atoms between the individual chains and scales
as ∼N2. On the other hand, for complete destructive
interference, the relative phase between atoms in different
chains must be an odd multiple of π and the number of
atoms in each chain must be the same. For unequal numbers
of atoms in the two chains, destructive interference cannot
be complete. The solid line in Fig. 3(c) is based on our
numerical simulations which include random filling of
traps, inelastic scattering, and atomic position disorder, see
Supplemental Material [27].
It is well known that restricting the dimensionality of a

quantum system can radically alter its global properties, as
well as interparticle interactions and, in doing so, allow for
new applications that do not occur in higher dimensions.
Frequently in such settings, many-body effects play a
critical role. In contrast, our work demonstrates that the
reduced dimensionality of a quantum system can be
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FIG. 3. Observation of constructive and destructive Bragg scattering from two chains. (a) Averaged fluorescence images of two linear
chains under three different values of the chain separation L ¼ Lk sin θ0 þ L⊥ cos θ0. (b) Measured photon count rate as a function of Lk
for N ¼ 8, 12, 16. Error bars represent one standard deviation for M photoelectric counting events. The green lines are the numerical
simulation based on a Monte Carlo simulation with 1000 runs. The shading on the line represents the standard deviation of the
simulation divided by the square root of the averaged number of trials in the experiments. The black dotted lines show the detection
background which is measured without loading atoms. (c) The observed scaling of the interference visibilities V as a function of the total
number of atoms N. Each point is obtained by fitting the observed fringe by a sinusoidal function. Error bars indicate the fitting errors
with 68% confidence intervals. The solid line is the result of the numerical simulation together with the standard error of the mean
(shaded area).
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important in a situation with no strong interparticle corre-
lations. Specifically, we have demonstrated phase-matched
coherent scattering for one- and two-dimensional geo-
metries of a single-atom qubit array suitable for storage
and processing of quantum information. High-visibility
interference fringes are observed for two atomic chains as a
function of their separation. Atom arrays connected to
photonic channels can provide a technology foundation for
future quantum networks with efficient multipartite scaling.
Networks using such arrays as quantum nodes would offer
a variety of schemes to encode, transfer, and manipulate
quantum information within and between the nodes of the
network for distributed quantum computation, communi-
cation, and sensing [26]. A logical extension of this work
could involve the creation of multiatom entangled states in
a setting where the atoms can be individually addressed and
their various combinations chosen for entangled state
generation.

This work was supported by the Army Research
Laboratory (ARL) Center for Distributed Quantum
Information, Air Force Office of Scientific Research, and
the National Science Foundation.
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