
 

Building Continuous Time Crystals from Rare Events

R. Hurtado-Gutiérrez ,1,2,* F. Carollo ,3,† C. Pérez-Espigares ,1,2,‡,¶ and P. I. Hurtado 1,2,§,¶
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Symmetry-breaking dynamical phase transitions (DPTs) abound in the fluctuations of non-
equilibrium systems. Here, we show that the spectral features of a particular class of DPTs exhibit
the fingerprints of the recently discovered time-crystal phase of matter. Using Doob’s transform as a
tool, we provide a mechanism to build classical time-crystal generators from the rare event statistics
of some driven diffusive systems. An analysis of the Doob’s smart field in terms of the order
parameter of the transition then leads to the time-crystal lattice gas (TCLG), a model of driven fluid
subject to an external packing field, which presents a clear-cut steady-state phase transition to a time-
crystalline phase characterized by a matter density wave, which breaks continuous time-translation
symmetry and displays rigidity and long-range spatiotemporal order, as required for a time crystal. A
hydrodynamic analysis of the TCLG transition uncovers striking similarities, but also key differences,
with the Kuramoto synchronization transition. Possible experimental realizations of the TCLG in
colloidal fluids are also discussed.
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Introduction.—Most symmetries in nature can be spon-
taneously broken (gauge symmetries, rotational invariance,
discrete symmetries, etc.), with the system ground state
showing fewer symmetries than the associated action. A
good example is the spatial-translation symmetry, which
breaks, spontaneously giving rise to new phases of matter
characterized by crystalline order, accompanied by a
number of distinct physical features such as rigidity,
long-range order or Bragg peaks [1]. Time-translation
symmetry, on the other hand, seemed to be special and
fundamentally unbreakable. This changed when Wilczek
and Shapere proposed the concept of time crystals [2,3],
i.e., systems whose ground state spontaneously breaks
time-translation symmetry and thus exhibits enduring
periodic motion. This concept, though natural, has stirred
a vivid debate among physicists, leading to some clear-cut
conclusions [4–8]. Several no-go theorems have been
proven that forbid time-crystalline order in equilibrium
systems under rather general conditions [9–11], though
time crystals are still possible out of equilibrium. In
particular, periodically driven (Floquet) systems have been
shown to display spontaneous breaking of discrete
time-translation symmetry via subharmonic entrainment
[12–16]. These so-called discrete time crystals, recently
observed in the lab [16–18], are robust against environ-
mental dissipation [19–24] and have also classical counter-
parts [25,26]. In any case, the possibility of spontaneous
breaking of continuous time-translation symmetry remains
puzzling (see, however, [27–30]).

Here, we propose an alternative route to search for time-
crystalline order in classical settings, based on the recent
observation of spontaneous symmetry breaking in the
dynamical fluctuations of many-body systems [31–62].
Such fluctuations or rare events concern time-integrated
observables and are highly unlikely to occur, since their
probability decays exponentially with time, thus following
a large deviation principle [63]. However, when these
fluctuations come about, they may lead to dynamical phase
transitions (DPTs), which manifest as drastic changes in the
trajectories of the system and have been recently found in
many contexts [31,34,57,64–67]. In particular, second-
order DPTs are associated with the emergence of sym-
metry-broken structures [32,33,39,41,42,45,51,52,59,68].
This is the case of a paradigmatic classical model of particle
transport: the weakly asymmetric simple exclusion process
(WASEP) in 1d [41,54,65,69–72]. The periodic WASEP is
a driven diffusive system that, in order to sustain a time-
integrated current fluctuation well below its average,
develops a jammed density wave or rotating condensate
to hinder particle transport and thus facilitate the fluctuation
[32,41]. This is displayed in the insets to Fig. 1(a) [41],
where a rotating condensate arises for a subcritical biasing
field λ < λc, which drives the system well below its average
stationary current—corresponding to λ ¼ 0. This DPT is
captured by a packing order parameter r, which measures
the accumulation of particles around the center of mass of
the system; see Fig. 1(a). Such DPT breaks the continuous
time-translational symmetry of the original action, thus
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opening the door to its use as a resource to build continuous
time crystals.
In this Letter, we report three main results. First, we

demonstrate that the rotating condensate corresponds
to a time-crystal phase at the fluctuating level. We do
this by exploring the spectral fingerprints of the DPT
present in the WASEP. In particular, we show that the
spectrum of the tilted generator describing current fluc-
tuations in this model becomes asymptotically gapless for
currents below a critical threshold. Here, a macroscopic
fraction of eigenvalues shows a vanishing real part of the
gap as the system size L → ∞, while developing a band
structure in the imaginary axis (see Fig. 2), which is the
hallmark of time crystals [27]. Interestingly, these rare
events can be made typical (i.e., a steady-state property)
by virtue of Doob’s transform [73–80], which can be
interpreted in terms of the original dynamics supple-
mented with a smart driving field. The second main result
consists in showing that this smart field acts as a packing
field, pushing particles that lag behind the condensate’s
center of mass while restraining those moving ahead. This
amplifies naturally occurring fluctuations of the packing
parameter [see Fig. 1(b)], a nonlinear feedback mechanism
(formally reminiscent of the Kuramoto synchronization
transition [81–84]), which eventually leads to a time-
crystal phase. These observations lead us to the third
main result, which distills the key properties of Doob’s
smart field to introduce the time-crystal lattice gas
(TCLG). Numerical simulations and a local stability
analysis of its hydrodynamics confirm that the TCLG
exhibits a steady-state phase transition to a time-crystalline
phase with a matter wave, which breaks continuous time-
translation symmetry and displays rigidity, robust coherent
periodic motion, and long-range spatiotemporal order
despite the stochasticity of the underlying dynamics.

Model.—The WASEP belongs to a broad class of driven
diffusive systems of fundamental interest [64,85,86].
Microscopically, it consists of N particles evolving in a
1d lattice of L ≥ N sites subject to periodic boundary
conditions, so the total density is ρ0 ¼ N=L. Each lattice
site may be empty or occupied by one particle at most, so a
microscopic configuration is given by C ¼ fnkgk¼1;…;L,
with nk ¼ 0, 1 the occupation number of the kth site, and
N ¼ P

L
k¼1 nk. Particles may hop randomly to empty

neighboring sites along the �x direction with rates
p� ¼ 1

2
e�E=L, with E an external field, which drives

the system to a nonequilibrium steady state characterized
by an average current hqi ¼ ρ0ð1 − ρ0ÞE and a homo-
geneous density profile hnki ¼ ρ0 ∀ k. Configurations
can be encoded as vectors in a Hilbert space [87],
jCi ¼⊗L

k¼1 ðnk; 1 − nkÞT , with T denoting transposition,
and the system information at time t is stored in a
vector jPti ¼ ½PtðC1Þ; PtðC2Þ;…�T ¼ P

i PtðCiÞjCii, with
PtðCiÞ representing the probability of configuration Ci.
This probability vector is normalized, h−jPti ¼ 1, with
h−j ¼ P

ihCij, and hCijCji ¼ δij. jPti evolves in time
according to a master equation ∂tjPti ¼ WjPti, where
W defines the Markov generator of the dynamics (see
below). At the macroscopic level, driven lattice gases like
WASEP are characterized by a density field ρðx; tÞ which
obeys a hydrodynamic equation [88]

∂tρ ¼ −∂x½−DðρÞ∂xρþ σðρÞE�; ð1Þ

withDðρÞ and σðρÞ the diffusivity and mobility coefficients,
which for WASEP are DðρÞ ¼ 1=2 and σðρÞ ¼ ρð1 − ρÞ.
Fluctuations.—We consider now the statistics of an

ensemble of trajectories conditioned to a given space- and
time-integrated current Q during a long time t. As in
equilibrium statistical physics [63], this trajectory ensem-
ble is fully characterized by a dynamical partition
function, ZtðλÞ ¼

P
Q PtðQÞeλQ, where PtðQÞ is the

probability of trajectories of duration t with total current
Q, or equivalently by the associated dynamical free
energy θðλÞ ¼ limt→∞ t−1 lnZtðλÞ. The variable λ is an
intensive biasing field, conjugated to the extensive cur-
rent Q in a way similar to the relation between temper-
ature and energy in equilibrium systems [76]. Negative
(positive) values of λ bias the statistics of Q toward
currents lower (larger) than the average stationary value,
which corresponds to λ ¼ 0 [38]. The statistics of the
configurations associated with a rare event of parameter λ
are captured by a vector jPtðλÞi, which evolves in time
according to a deformed master equation ∂tjPtðλÞi ¼
WλjPtðλÞi, with Wλ a tilted generator, which biases the
original dynamics in order to favor large or low currents
according to the sign of λ. It can be shown [63,65,89]
that θðλÞ is the largest eigenvalue of Wλ, as ZtðλÞ ¼
h−jPtðλÞi. For WASEP [36,38],

(a) (b)

FIG. 1. (a) Packing order parameter rðλÞ for the DPT in 1d
WASEP as a function of the biasing field λ. Inset: Spacetime
trajectories for current fluctuations above (top) and below
(bottom) the critical point. Note the density wave in the latter
case. (b) Time-crystal lattice gas with a packing field (shaded
curve), which pushes particles lagging behind the center of mass
while restraining those moving ahead, a mechanism that leads to
a a rotating condensate. The arrow locates the condensate center
of mass, with a magnitude ∝ rC.
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where σ̂�k are creation and annihilation operators acting
on site k ∈ ½1; L�, I is the identity matrix, and n̂k ¼ σ̂þk σ̂

−
k

is the number operator. Note that the original Markov
generator is just W ≡Wλ¼0, while Wλ≠0 does not
conserve probability (i.e., h−jWλ≠0 ≠ 0).
Spectral analysis of the DPT.—The WASEP has been

shown to exhibit a DPT [32,41,65] to a time-translation
symmetry-broken phase for jEj > Ec ≡ π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ð1 − ρ0Þ

p
and λ−c < λ < λþc , with λ�c ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − E2

c

p
− E, where

θðλÞ develops a second-order singularity, and a macro-
scopic jammed condensate emerges to hinder particle
transport and thus aid low current fluctuations; see bottom
inset in Fig. 1(a). This DPT is well captured by the packing
order parameter rðλÞ, the λ-ensemble average of rC ≡ jzCj,
with zC ≡ N−1PN

k¼1 e
i2πxkðCÞ=L ¼ rCeiϕC , and xkðCÞ the

lattice position of particle k in configuration C; see
Fig. 1(a). Note that rC ¼ jzCj and ϕC ¼ argðzCÞ are the
well-known Kuramoto order parameters of synchronization
[81–84], measuring in this case the particles’ spatial
coherence and the center-of-mass angular position, respec-
tively, thus capturing the transition from the homogeneous
to the density wave phase. The spectrum of Wλ codifies all
the information on this DPT. In particular, let jRλ

i i and hLλ
i j

be the ith (i ¼ 0; 1;…; 2L − 1) right and left eigen-
vectors of Wλ, respectively, so WλjRλ

i i ¼ θiðλÞjRλ
i i and

hLλ
i jWλ ¼ θiðλÞhLλ

i j, with θiðλÞ ∈ C the associated eigen-
value ordered according to their real part (largest first) so
that θðλÞ ¼ θ0ðλÞ. Figures 2(a) and 2(b) show the spectrum
ofWλ for L ¼ 24, ρ0 ¼ 1=3, E ¼ 10, and two values of the
biasing field λ, one subcritical [Fig. 2(a)] and another once
the DPT has kicked in [Fig. 2(b)]. Clearly, the structure of
the spectrum in the complex plane changes radically
between the two phases. In particular, while the spectrum
is gapped (in the sense that Re½θi − θ0� < 0 for i > 0) for
any λ < λ−c or λ > λþc [Fig. 2(c)], the condensate phase
(λ−c < λ < λþc ) is characterized by a vanishing gap in the
real part of a macroscopic fraction of eigenvalues as
L → ∞, which decays as a power-law with 1=L; see
Fig. 2(d). Moreover, the imaginary parts of the gap-closing
eigenvalues exhibit a clear band structure with a constant
frequency spacing δ, which can be directly linked with the
velocity v of the moving condensate, δ ¼ 2πv=L [see
dashed horizontal lines in Fig. 2(d)], all standard features
of a time-crystal phase [4–8]. Indeed, the emergence of a
multiple [OðLÞ-fold] degeneracy as L increases for λ−c <
λ < λþc signals the appearance of different competing
(symmetry-broken) states, related to the invariance of the
condensate against integer translations along the lattice.

This DPT at the fluctuating level has therefore the finger-
prints of a time-crystal phase, thus enabling a path to
engineer these novel phases of matter in driven diffusive
systems.
Doob’s smart field.—We can now turn the condensate

dynamical phase into a true time-crystal phase of matter by
making typical the rare events for any λ, i.e., by trans-
forming the nonstochastic generator Wλ into a physical
generator Wλ

D via the Doob’s transform Wλ
D ≡ L0WλL−1

0 −
θ0ðλÞ, with L0 a diagonal matrix with elements ðL0Þii ¼
ðhLλ

0jÞi [73–80]. Wλ
D is now a probability-conserving

stochastic matrix, h−jWλ
D ¼ 0, with a spectrum simply

related to that of Wλ, i.e., θDi ðλÞ ¼ θiðλÞ − θ0ðλÞ, with
jRλ

i;Di ¼ L0jRλ
i i, and hLλ

i;Dj ¼ hLλ
i jL−1

0 , generating in the
steady state the same trajectory statistics as Wλ. To
better understand the underlying physics, we now write
Doob’s dynamics in terms of the original WASEP dynam-
ics supplemented by a smart field ED

λ ; i.e., we define
ðWλ

DÞij ¼ ðWÞij exp½qCiCj
ðED

λ Þij=L�, with ðWλ
DÞij ¼

hCijWλ
DjCji and qCiCj

¼ �1 the direction of the particle
jump in the transitionCj → Ci. Together with the definition
of Wλ

D, this leads to

ðED
λ Þij ¼ λþ qCiCj

L ln

�hLλ
0jCii

hLλ
0jCji

�
: ð3Þ

ED
λ can be interpreted as the external field needed to

make typical a rare event of bias field λ. In order to
disentangle the nonlocal complexity of Doob’s smart field,
we scrutinize its dependence on the packing parameter rC.

(a) (c)

(d)

FIG. 2. Diffusively scaled spectrum of the tilted generator Wλ

for E ¼ 10. (a) Homogeneous phase for λ ¼ −1. (b) Condensate
phase for λ ¼ −9. Big colored points correspond to L ¼ 24,
while small light gray points represent the leading eigenvalues for
smaller lattice sizes (L ¼ 9, 12, 15, 18, 21), showing their
evolution as L increases. (c),(d) Finite-size scaling analysis for
the real and imaginary parts of the leading eigenvalues in the
homogeneous (c) and condensate (d) phases. The real parts
converge to zero as a power law of 1=L in the condensate phase,
while the imaginary parts exhibit a clear band structure with
constant frequency spacing δ, proportional to the condensate
velocity.
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In particular, Fig. 3(b) plots the projections hLλ
0jCi versus

the packing parameter rC for a large sample of microscopic
configurations C, as obtained for L ¼ 24, ρ0 ¼ 1=3, and
λ ¼ −9 (condensate phase). Interestingly, this shows that
hLλ

0jCi ≃ fλ;LðrCÞ to a high degree of accuracy, with
fλ;LðrÞ some unknown λ- and L-dependent function of
the packing parameter. This means, in particular, that the
Doob’s smart field ðED

λ Þij depends essentially on the
packing parameter of configurations Ci and Cj, a radical
simplification. Moreover, as elementary transitions involve
just a local particle jump, the resulting change on the
packing parameter is perturbatively small for large enough
L. In particular, if C0

k is the configuration that results
from C after a particle jump at site k ∈ ½1; L�, we
have that rC0

k
≃ rC þ 2πqC0

kC
ðρ0L2Þ−1 sinðϕC − ϕkÞ, with

ϕk ≡ 2πk=L. The Doob’s smart field for this transition is
then ðED

λ ÞC0
k;C

≃ λþ 2πðρ0LÞ−1gλ;LðrCÞ sinðϕC − ϕkÞ, with
gλ;LðrÞ≡ f0λ;LðrÞ=fλ;LðrÞ, and we empirically find a linear
dependence gλ;LðrÞ ≈ −λLr=10 near the critical point λþc .
This is confirmed in Fig. 3(c), where we plot
10ρ0½ðED

λ ÞC0
k;C

− λ�=ð2πλrCÞ, obtained from Eq. (3) for a
large sample of connected configurations C → C0

k as a
function of ϕC − ϕk. Similar effective potentials for atypi-
cal fluctuations have been found in other driven systems
[80,90]. In this way, ðED

λ − λÞ acts as a packing field on a
given configuration C, pushing particles that lag behind the
center of mass while restraining those moving ahead [see
Fig. 3(a)], with an amplitude proportional to the packing
parameter rC and λ. This nonlinear feedback mechanism,
which competes with the diffusive tendency to flatten
profiles and the pushing constant field, amplifies naturally
occurring fluctuations of the packing parameter, leading
eventually to a time-crystal phase for λ−c < λ < λþc .
Time-crystal lattice gas.—Inspired by the results of the

previous analysis, we now simplify the Doob’s smart
field to introduce the time-crystal lattice gas. This is a

variant of the 1d WASEP, where a particle at site k hops
stochastically under a configuration-dependent packing
field EλðC; kÞ ¼ Eþ λþ 2λrC sinðϕk − ϕCÞ, with E being
a constant external field and λ now a control parameter.
We note that this smart field can be also written as a
Kuramoto-like long-range interaction term EλðC; kÞ ¼
Eþ λþ ð2λ=NÞPj≠k sinðϕk − ϕjÞ, highlighting the link
between the TCLG and the Kuramoto model of synchro-
nization [81–84]. However, we stress that this link is only
formal, as the Kuramoto model lacks any particle transport
in real space. According to the discussion above, we expect
this lattice gas to display a putative steady-state phase
transition to a time-crystal phase with a rotating condensate
at some critical λc as L → ∞ (due to the Perron-Frobenius
theorem). To test this picture, we performed extensive
Monte Carlo simulations and a finite-size scaling analysis
of the TCLG at density ρ0 ¼ 1=3. The average packing
parameter hri increases steeply but continuously for λ <
λc ¼ −π=ð1 − ρ0Þ ≈ −4.7 [see Fig. 4(a)], converging
toward the macroscopic hydrodynamic prediction (see
below) as L → ∞. Moreover, the associated susceptibility,
as measured by the packing fluctuations hr2i − hri2,
exhibits a well-defined peak around λc, which sharpens
as L grows and is compatible with a divergence in the
thermodynamic limit [Fig. 4(b)]. The critical point location
can be inferred from the crossing of the finite-size Binder
cumulants U4ðLÞ ¼ 1 − hr4i=ð3hr2iÞ for different L’s [see
Fig. 4(c)] and agrees with the hydrodynamic value for λc.
Interestingly, the average density at a given point exhibits
persistent oscillations as a function of time with period v−1

(in the diffusive timescale), [see Fig. 4(d)], with v
the condensate velocity, a universal feature of time
crystals [2–28], and converges toward the hydrodynamic

(a) (b)

(c)

FIG. 3. (a) Smart packing field for ρ0 ¼ 1=3 and λ ¼ −9 as a
function of packing order parameter rC and the angular distance
to the center-of-mass position. (b) hLλ

0jCi versus the packing
order parameter rC for L ¼ 24, ρ0 ¼ 1=3, E ¼ 10, λ ¼ −9
(condensate phase), and a large sample of microscopic configu-
rations. (c) Angular dependence of the Doob’s smart field with
respect to the center-of-mass angular location for a large sample
of microscopic configurations and the same parameters, together
with the sinðϕk − ϕCÞ prediction (line).

(a) (d)

(f)
(c)

(b)

(e)

FIG. 4. Numerics for the time-crystal lattice gas. Average
packing order parameter (a), its fluctuations (b), and Binder’s
cumulant (c) measured for ρ0 ¼ 1=3, E ¼ 10 and different L.
(d) Local density as a function of time and different L’s in the
time-crystal phase (λ ¼ −9). Note the persistent oscillations
typical of time crystals. (e) Decay of the oscillations damping
rate as L → ∞, a clear sign of the rigidity of the time-crystal
phase in the thermodynamic limit. (f) Average density profile of
the condensate for L ¼ 3072 and varying λ. Dashed lines
correspond to hydrodynamic predictions.
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(undamped) periodic prediction as L → ∞. Indeed, the
finite-size damping rate of oscillations, γL, obtained from
an exponential fit to the envelope of hn0ðtÞi, decays to zero
in the thermodynamic limit [Fig. 4(e)], a clear signature of
the rigidity of the long-range spatiotemporal order emerg-
ing in the time-crystal phase of TCLG. We also measured
the average density profile of the moving condensate [see
Fig. 4(f)], which becomes highly nonlinear deep into the
time-crystal phase. In the macroscopic limit, one can show
using a local equilibrium approximation [91–96] that
the TCLG is described by a hydrodynamic equation (1)
with a ρ-dependent local field Eλðρ; xÞ ¼ Eþ λþ
2λrρ sinð2πx − ϕρÞ, with rρ ¼ jzρj, ϕρ ¼ argðzρÞ, and zρ ¼
ρ−10

R
1
0 dxρðxÞei2πx the field-theoretic generalization of our

complex order parameter. A local stability analysis then
shows [39,54,65] that the homogeneous solution ρðx; tÞ ¼
ρ0 becomes unstable at λc ¼ −2πρ0Dðρ0Þ=σðρ0Þ ¼
−π=ð1 − ρ0Þ, where a ballistic condensate emerges.
Hydrodynamic predictions are fully confirmed in simula-
tions; see Fig. 4. Note that the TCLG hydrodynamics is
similar to the continuous limit of the Kuramoto model [84],
with the peculiarity that for TCLG, the mobility σðρÞ is
quadratic in ρ (a reflection of microscopic particle exclu-
sion), while it is linear for Kuramoto.
Conclusion.—We provide here a new mechanism to

engineer time-crystalline order in driven diffusive media
by making typical rare trajectories that break time-
translation symmetry and physically based on the idea of
a packing field, which triggers a condensation instability.
The modern experimental control of colloidal fluids
trapped in quasi-1d periodic structures, such as circular
channels [97,98] or optical traps based, e.g., on Bessel rings
or optical vortices [99–101], together with feedback-
control force protocols to implement the nonlinear packing
field EλðC; kÞ using optical tweezers [102–107], may allow
the engineering and direct observation of this time-crystal
phase, opening the door to further experimental advances in
this active field. Moreover, the ideas developed in this
Letter can be further exploited in d > 1, where DPTs
exhibit a much richer phenomenology [54,108], with
different spatiotemporal symmetry-broken fluctuation
phases separated by lines of first- and second-order
DPTs, competing density waves and coexistence. This
may lead, via the Doob’s transform pathway here
described, to materials with a rich phase diagram composed
of multiple spacetime-crystalline phases.
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Poincaré 25, 1 (1989), http://www.numdam.org/item/
AIHPB_1989__25_1_1_0/.

[86] J. Gärtner, Convergence towards Burger’s equation and
propagation of chaos for weakly asymmetric exclusion
processes, Stoch. Proc. Appl. 27, 233 (1987).

[87] G. M. Schutz, Exactly solvable models for many-body
systems far from equilibrium, Phase Transitions Crit.
Phenom. 19, 1 (2001).

[88] H. Spohn, Large Scale Dynamics of Interacting Particles,
Theoretical and Mathematical Physics (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012).

[89] J. P. Garrahan, Aspects of non-equilibrium in classical and
quantum systems: Slow relaxation and glasses, dynamical
large deviations, quantum non-ergodicity, and open quan-
tum dynamics, Physica (Amsterdam) 504A, 130 (2018).

[90] S. Kaviani and F. H. Jafarpour, Current fluctuations in a
stochastic system of classical particles with next-nearest-
neighbor interactions, J. Stat. Mech. (2020) 013210.

[91] A. Prados, A. Lasanta, and P. I. Hurtado, Nonlinear driven
diffusive systems with dissipation: Fluctuating hydrody-
namics, Phys. Rev. E 86, 031134 (2012).

[92] P. I. Hurtado, A. Lasanta, and A. Prados, Typical and rare
fluctuations in nonlinear driven diffusive systems with
dissipation, Phys. Rev. E 88, 022110 (2013).

[93] A. Lasanta, A. Manacorda, A. Prados, and A. Puglisi,
Fluctuating hydrodynamics and mesoscopic effects of
spatial correlations in dissipative systems with conserved
momentum, New J. Phys. 17, 083039 (2015).

PHYSICAL REVIEW LETTERS 125, 160601 (2020)

160601-7

https://doi.org/10.1103/PhysRevE.96.062108
https://doi.org/10.1103/PhysRevE.96.062108
https://doi.org/10.1088/1751-8121/aaa8f9
https://doi.org/10.1103/PhysRevE.98.052116
https://doi.org/10.1103/PhysRevE.98.052116
https://doi.org/10.1103/PhysRevA.98.021804
https://doi.org/10.1103/PhysRevA.98.021804
https://doi.org/10.1088/1751-8121/aadc6e
https://doi.org/10.1103/PhysRevE.97.032123
https://doi.org/10.1103/PhysRevE.97.062109
https://doi.org/10.1103/PhysRevE.97.062109
https://doi.org/10.1007/s10955-018-2186-7
https://doi.org/10.1007/s10955-018-2186-7
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1007/s10955-013-0894-6
https://doi.org/10.1007/s10955-013-0894-6
https://doi.org/10.1088/1751-8113/48/50/503001
https://doi.org/10.1063/1.5091669
https://doi.org/10.1063/1.5091669
https://doi.org/10.1103/PhysRevB.98.094301
https://doi.org/10.1016/0001-8708(70)90034-4
https://doi.org/10.1016/0001-8708(70)90034-4
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1103/PhysRevLett.80.209
https://doi.org/10.1103/PhysRevLett.80.209
https://doi.org/10.1088/0305-4470/39/41/S03
https://doi.org/10.24033/bsmf.1494
https://doi.org/10.24033/bsmf.1494
https://doi.org/10.1088/1742-5468/2015/12/P12001
https://doi.org/10.1007/s00023-014-0375-8
https://doi.org/10.1007/s00023-014-0375-8
https://doi.org/10.1007/s00023-014-0375-8
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1103/PhysRevA.98.010103
https://doi.org/10.1088/1742-5468/2009/07/P07017
https://doi.org/10.1143/PTPS.184.304
https://doi.org/10.1143/PTPS.184.304
https://doi.org/10.1088/1742-5468/2010/10/P10007
https://doi.org/10.1088/1742-5468/2010/10/P10007
https://doi.org/10.1007/BF01009349
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
http://www.numdam.org/item/AIHPB_1989__25_1_1_0/
http://www.numdam.org/item/AIHPB_1989__25_1_1_0/
http://www.numdam.org/item/AIHPB_1989__25_1_1_0/
http://www.numdam.org/item/AIHPB_1989__25_1_1_0/
https://doi.org/10.1016/0304-4149(87)90040-8
https://doi.org/10.1016/S1062-7901(01)80015-X
https://doi.org/10.1016/S1062-7901(01)80015-X
https://doi.org/10.1016/j.physa.2017.12.149
https://doi.org/10.1088/1742-5468/ab5d0a
https://doi.org/10.1103/PhysRevE.86.031134
https://doi.org/10.1103/PhysRevE.88.022110
https://doi.org/10.1088/1367-2630/17/8/083039


[94] A. Lasanta, P. I. Hurtado, and A. Prados, Statistics of the
dissipated energy in driven diffusive systems, Eur. Phys.
J. E 39, 35 (2016).

[95] A. Manacorda, C. A. Plata, A. Lasanta, A. Puglisi, and
A. Prados, Lattice models for granular-like velocity
fields: Hydrodynamic description, J. Stat. Phys. 164,
810 (2016).

[96] C. Gutiérrez-Ariza and P. I. Hurtado, The kinetic exclusion
process: A tale of two fields, J. Stat. Mech. (2019) 103203.

[97] Q. H. Wei, C. Bechinger, and P. Leiderer, Single-file
diffusion of colloids in one-dimensional channels, Science
287, 625 (2000).

[98] C. Lutz, M. Kollmann, and C. Bechinger, Single-File
Diffusion of Colloids in One-Dimensional Channels, Phys.
Rev. Lett. 93, 026001 (2004).

[99] K. Ladavac and D. G. Grier, Colloidal hydrodynamic
coupling in concentric optical vortices, Europhys. Lett.
70, 548 (2005).

[100] Y. Roichman, D. G. Grier, and G. Zaslavsky, Anomalous
collective dynamics in optically driven colloidal rings,
Phys. Rev. E 75, 020401(R) (2007).

[101] Y. Roichman and D. G. Grier, Three-dimensional holo-
graphic ring traps, in Complex Light and Optical Forces,
edited by D. L. Andrews, E. J. Gálvez, and G. Nienhuis

(International Society for Optics and Photonics (SPIE),
Bellingham, 2007), Vol. 6483, p. 131.

[102] A. Kumar and J. Bechhoefer, Optical feedback tweezers, in
Optical Trapping and Optical Micromanipulation XV
edited by K. Dholakia and G. C. Spalding (International
Society for Optics and Photonics (SPIE), Bellingham,
2018), Vol. 10723, p. 282.

[103] D. G. Grier, Optical tweezers in colloid and interface
science, Curr. Opin. Colloid Interface Sci. 2, 264 (1997).

[104] A. Ortiz-Ambriz, J. C. Gutiérrez-Vega, and D. Petrov,
Manipulation of dielectric particles with nondiffracting
parabolic beams, J. Opt. Soc. Am. A 31, 2759 (2014).

[105] I. A. Martínez, E. Roldán, L. Dinis, Dmitri Petrov, and
R. A. Rica, Adiabatic Processes Realized with a Trapped
Brownian Particle, Phys. Rev. Lett. 114, 120601 (2015).

[106] I. A. Martínez, E. Roldán, L. Dinis, and R. A. Rica,
Colloidal heat engines: A review, Soft Matter 13, 22
(2017).

[107] J. A. Rodrigo, M. Angulo, and T. Alieva, Dynamic
morphing of 3d curved laser traps for all-optical manipu-
lation of particles, Opt. Express 26, 18608 (2018).

[108] N. Tizón-Escamilla, P. I. Hurtado, and P. L. Garrido,
Structure of the optimal path to a fluctuation, Phys.
Rev. E 95, 032119 (2017).

PHYSICAL REVIEW LETTERS 125, 160601 (2020)

160601-8

https://doi.org/10.1140/epje/i2016-16035-4
https://doi.org/10.1140/epje/i2016-16035-4
https://doi.org/10.1007/s10955-016-1575-z
https://doi.org/10.1007/s10955-016-1575-z
https://doi.org/10.1088/1742-5468/ab4587
https://doi.org/10.1126/science.287.5453.625
https://doi.org/10.1126/science.287.5453.625
https://doi.org/10.1103/PhysRevLett.93.026001
https://doi.org/10.1103/PhysRevLett.93.026001
https://doi.org/10.1209/epl/i2005-10022-6
https://doi.org/10.1209/epl/i2005-10022-6
https://doi.org/10.1103/PhysRevE.75.020401
https://doi.org/10.1016/S1359-0294(97)80034-9
https://doi.org/10.1364/JOSAA.31.002759
https://doi.org/10.1103/PhysRevLett.114.120601
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1364/OE.26.018608
https://doi.org/10.1103/PhysRevE.95.032119
https://doi.org/10.1103/PhysRevE.95.032119

