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Channel formation and branching is widely seen in physical systems where movement of fluid through a
porous structure causes the spatiotemporal evolution of the medium. We provide a simple theoretical
framework that embodies this feedback mechanism in a multiphase model for flow through a frangible
porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of
branched networks whose topology is determined by the geometry of external flow forcing. This allows us
to delineate the conditions under which splitting and/or coalescing branched network formation is favored,
with potential implications for both understanding and controlling branching in soft frangible media.
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Branching patterns in porous media are common in
many natural settings that include both living and nonliving
matter [1]. The formation of arborized patterns in physical
and chemical systems is driven by a variety of processes all
of which involve a combination of erosion, transport, and
deposition. On the laboratory scale, these processes can
involve chemical dissolution of brittle matrices by a
penetrating reactive fluid [2,3], advective rearrangement
of unconsolidated media, dielectric breakdown of
conducting media [4,5], formation of fingerlike
protrusions in dense granular suspensions [6], formation
of beach rills in natural drainage systems [7,8], etc. On
planetary scales, melt transport in the mantle arises via
branching morphologies that lead to localized channels of
widths up to 100 m [9-11], and water-driven erosion and
branching in glaciers arises on scales of the order of 10 m
[12]. In biological systems, the best known arborized
systems are vasculatures in plants and animals. These arise
through morphogenetic mechanisms involving gradients
and physical flows that arrange and rearrange matter
through a variety of feedback mechanisms at the cellular,
organismal, and societal level [13,14]. Examples include
slime molds [15], vascular networks [16], and nest archi-
tectures of social insects [17].

Models based on porous flow theory [18,19] are capable
of describing flow through these branched networks.
However, their formation requires nonlinear models with
multiple evolving phase boundaries which are still
only partially understood both theoretically and experi-
mentally. Here, we propose a simple model via an effective
continuum theory that links flow, permeability, and
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pressure gradients by considering pore-scale grain
dislodgement in a relatively brittle structure. Numerical
solutions of the resulting governing equations show the
emergence of branching morphologies through selective
erosion and subsequent flow enhancement.

Mathematical model.—Our starting point is a fluid-filled
porous domain Q comprised of a rigid grain microstructure
with characteristic pore size [, as in the Fig. 1(a) inset. The
fluid is of viscosity # and density p. On length scales large
compared to the pore size L > [, we can define macro-
scopic continuum fields that include the solid fraction
¢(x,1) and volumetric fluid flux q(x,?) as averages of
microscopic quantities [20]. Pressure gradients over
macroscopic lengths I' ~ |Vp| drive motion of the inter-
stitial fluid at velocities V ~ |q| relative to the pore
structure. Balancing the pressure gradients and viscous
resistance at a scaling level implies that I" ~ V' /[, so that
individual grains feel forces of magnitude #VI ~ I'l3. When
these overcome the attractive forces providing microstruc-
tural integrity, grains are dislodged, and the local per-
meability of the medium evolves. Symmetry arguments
introduced in [21] suggest an erosion rate depending on the
pressure gradient magnitude as a proxy for pore-scale grain
tractions. Denoting the network breaking stress B(x, t), we
write the most general such rate law

O = —eodf(|Vpl. B/1). (1)
where e, is an erosion rate and f is a nonnegative

dimensionless function that vanishes for |Vp| < B/L
Our original model [21] accounted for the relative motion
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FIG. 1. Schematic of model fields, length scales, and erosion
criteria. (a) Branched patterns in porous media can emerge on
macroscopic lengths L due to interactions at the pore size /. In
this simulated pattern, eroded regions of low solid fraction ¢(x, 1)
are blue. At a given point on the macroscale (black dot), ¢ is the
fraction of a pore-scale integration volume (inset) occupied by
rigid grain microstructure (red circles). Fluid-mediated forces on
grains induce stresses over a macroscopic region (shaded green
circle) characterized by the communication length &. The
response fraction ¢ is the spatial average of ¢ throughout
this region. (b) The erosion threshold function (@) =
co tanh[w(p — ¢,)] + ¢ € [0,1] represents resistance to grain
dislodgement at response fraction ¢.

of the grains, fluid, and static porous medium via a three-
phase description allowing dislodged grains to deposit back
onto the microstructure. Here, we omit deposition and
focus on a simpler two-phase model assuming loose grains
to be indistinguishable from fluid.

In terms of a characteristic breaking stress B, and time
scale 7 = 1/ey, we can define a characteristic length L =
[(By/neg) and pressure gradient magnitude I' = B, /1. This
allows us to rescale our variables and parameters accord-
ingly; they should be assumed dimensionless for the
remainder of the Letter unless otherwise specified.
(Please see Supplemental Material (SM) section SM.1 [22]
for the full dimensional system of equations.)

Assuming that the solid is relatively stiff but brittle so
that it does not deform, the volumetric fluid flux q is well
described by Darcy’s law

(1-¢)°
¢*
where the dimensionless permeability x(¢) is the well-

known Carman-Kozeny relation [18,19]. Furthermore, if
the fluid is incompressible, conservation of mass implies

q=-«x(p)Vp. k()= (2)

V.q=-s(x1), (3)

where s(x, 1) is the rate at which fluid is depleted due to
processes such as bulk reaction or evaporation. By com-
bining the previous two equations, q can be eliminated to
obtain an elliptic equation for the pressure,

V- [x(¢)Vp] =s. (4)

Boundary conditions correspond to specified fluxes ¢;, and
¢out ON boundary regions of inflow 0, and outflow 0Q,,
(see SM.2 [22] for details). We note the flow direction,
which is determined by the boundary flux and fluid
depletion signs, may be reversed with no change to
morphogenic pattern formation because the erosion rule
(1) is agnostic to the substitution Vp — —Vp.

To close the system, we must relate the dimensionless
erosion rate f to the fields ¢(x, 7) and p(x, ). A minimal
analytic form for f suggests f = max{0,Vp- Vp—
B?/I?}. The breaking stress B(x, t) is itself is a nonlocal
function of the solid fraction, depending on the grain
density within a region of size £, a stress communication
length which may depend on the porosity. Here, we assume
the following hierarchy of constant lengths /| < &< L,
consistent with frangible brittle solids. In this limit, we
introduce a simple erosion threshold B?/> = y/(¢), defin-
ing the response fraction ¢(x,?) as the convolution of
¢(x, t) with a Gaussian kernel of length scale &, represent-
ing a spatial average of the solid fraction as shown in
Fig. 1(a) (see SM.3 [22] for details). Thus, the dimension-
less form of the erosion rate law (1) becomes

019 = —¢pmax {0,Vp - Vp —y(p)}. (5)

For the functional form of the threshold, we consider a
sigmoid y(¢@) € [0, 1] centered at a critical phase fraction
@., where the behavior is roughly linear over a scale
Ap ~ 1/w, where w represents a sharpness parameter as
shown in Fig. 1(b). See SM.4 [22] for the exact form. We
note that our functional choice satisfies y'(¢) > 0, i.e., the
medium becomes more resistant to erosion at larger ¢.

Equations (4) and (5) together determine the evolution of
the permeability of the porous medium, ¢(x,¢), and the
pressure, p(x,?), once we specify an initial condition.
Ignoring anisotropy in grain orientation and packing,
we set ¢(x,0) = ¢y + 6¢p(x), with ¢, a constant and
0¢ a perturbed packing structure described as a random
Gaussian thermal noise field with zero mean, variance 655,
and correlation length ¢ > [ satisfying

(6p(x)8¢(y)), = oj exp (=r/C). (6)

Here, (x), = [o(*)dxdy/vol(Q) is a spatial average over
all x,y € Q such that [x —y| =r.

The correlation length ¢ and stress communication
length & control the characteristic channel width w,.
From (5), loss of solid material at a point reduces resistance
to further erosion in a surrounding neighborhood of size
E—qualitatively similar to descriptions of nonlocal
damage accumulation in settings such as hydraulic
fracturing [23]. Features in the ¢ field, initially of size
¢, correspond to smoothed features in the ¢ field. Thus, the
channel width scale satisfies (> < w2 < & + £2, approach-
ing the small limit for large values of the packing variance
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aé and vice versa, consistent with results obtained using the
three-phase model [21]. The width of a given channel
scales with w,. and varies with the amount of flux it
conducts. See SM.5 [22] for details.

Before considering the spatiotemporal evolution of the
flow and permeability, we examine the local dependence of
erosion on the threshold shape w(¢) and local flux q.
Letting () = [,(x)dx/vol(A) denote a spatial average
over a mesoscopic region A, we introduce the scalar fields
@ = (¢), G> = (Vp-Vp), and Q% = (q - q). We see they
satisfy Q = —k(®)G, derived by averaging (2).
Differentiating this relation and combining it with an
averaged (5) yields a set of purely time-dependent equa-
tions describing trajectories through forcing-response
phase space. For eroding states with G* > y(®),

—=-0(G* —y), (7a)

dg) —2G2 ch%’) (G*—w) + g] . (7v)

Sustained erosion does not occur if Q = 0, for which
points on the threshold surface G*> = y are stable equilib-
ria. Eroding states reach the threshold in finite time, as can
be seen from (7a). For Q/Q > 0, this is not the case. The
quantity ®x’'/x < 0 is negative, so the squared gradient
decays or grows when the first or second term in (7b),
respectively, dominates the other. The majority of the
system’s evolution takes place along a monotonically
increasing slow manifold G (®) where the two are
balanced, corresponding to d(G?)/dt = 0. From (7b),

0

G,(G? —y)=—,
.S( S l//) @KJ

(8)
a cubic with one real root. In Fig. 2(a), we show the
trajectories and slow manifolds for varying Q. In Fig. 2(b),
we plot the rate of erosion on the manifold, f; = G? — v,
for thresholds of varying sharpness at a particular flux rate
Q. Theoretical bounds f, > f, > f;, corresponding to
constant thresholds y = 0 and 1, are plotted as black lines.
Both are monotonically increasing, diverge as ® — 1, and
vanish as @ — 0, so the rate of erosion slows over long
times. This effect is mitigated by a transition from f = f to
fo near ® = ¢,. For sharp thresholds of large w, this effect
is dominant and erosion accelerates upon reaching the
transition region. The relative difference between the
bounding rates, (fy— f1)/f1, vanishes as ® grows. In
particular, when ¢ < ¢, erosion is qualitatively faster
than when ¢ > @y,.. See SM.6 [22] for details.
Branching morphospaces.—Now, we turn to the
spatiotemporal evolution of the flow and permeability
fields in two-dimensional simulations. We aim to under-
stand when, how, and what arborization motifs arise as a
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FIG. 2. Homogeneous model of erosion in the presence of an
externally controlled flux Q(7) defined by (7). (a) Phase
trajectories through forcing-response space with initial condi-
tion (@, G?) = (0.8, 1.4) are shown for varying Q. The erosion
threshold y/(®) has @ = 8, ¢, = 0.7. Constant-flux trajectories
reach the threshold quickly, stopping erosion in finite time. For
QO # 0, sustained erosion takes place at long times along the
slow manifold G2(®), plotted here as a translucent, thick line.
(b) The erosion rate along the manifold, f, = G?—y, is
plotted for three thresholds with ¢, = 0.7 and varying sharp-
ness @, subject to Q = 0.1. Bounds on the rate f, > f; > f;
are plotted as black lines.

function of the boundary conditions, the dynamical rate
of boundary fluxes, and the nature and functional form of
the breaking threshold function. We integrate the coupled
set of Egs. (4) and (5) on a square domain
Q = [-5,5]> € R?, employing a second-order forward
Euler method with Richardson extrapolation for error
estimation and adaptive time stepping [24]. See SM.7
[22] for details. We adopt boundary conditions which
ramp up the flux from zero over a duration 7. Introducing
r(t) = min{1,7/T}, we set the fluid depletion rate and
boundary fluxes as s(x,7) = 3§r(t), g, (X,1) = ¢ir(1),
Gout(X, 1) = Gou (1), where we have introduced a set of
hatted constants corresponding to final magnitudes. This
implies a uniform bulk fluid sink § evenly distributed
throughout the domain. Similarly, the boundary fluxes are
assumed to be uniform everywhere on the regions 9€;,
and 0Q,,;, which we center on the bottom and top walls
of the domain, respectively.

There are two feedback mechanisms through which
erosion in the model promotes itself. The first, observed
in the homogeneous system, is the threshold reduction due
to previous erosion. The second is a direct effect of the
coupling between flux and permeability. According to (2),
flux is preferentially directed along paths of larger
permeability, so that, as it grows, flow from other parts
of the domain is redistributed to eroded areas. In terms of
the homogeneous phase space shown in Fig. 2(a), the
resulting flux increase moves quickly eroding areas onto
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FIG. 3. Erosion patterns as functions of boundary conditions obtained by solving (4) and (5). The solid fraction ¢(x, ) is shown at

t = 50. The integrated flux through the system is ramped from zero to a final magnitude F = g;,w;, over a duration 7 = 10. Flow enters
on the bottom wall and exits through the top wall (a)-(d) or via evaporation in the bulk (e). If the regions of inflow and outflow are of
similar size as in (a) and (b), flow is concentrated in straight channels. If they are of different sizes as in (c)—(e), one inflow channel
branches into many at the outflow. The boundary widths satisfy w;, = 0.1 or 10; w, = 0.1, 10 or 20. Simulation parameters: grid size
10002, ¢o =038, 9, =0.7, oy = 0.02,{ =0.1, 6 =0.1, w = 6.5, F = 0.8. (See SM movie 1 [22] for visualizations of the dynamics of

arborization that correspond to this figure.)

slow manifolds G?> of higher Q, speeding up erosion.
Slowly eroding areas experience the opposite effect until so
much flow is diverted that Q < 0, so erosion ceases. In this
way, flow enhancement leads directly to selective erosion
of high-x channelized regions of width w.. For a given
integrated fluid flux at the boundary F, the number of
channels to form in the absence of geometric constraints
will scale as N. ~ F/w,.; in what follows, N, > 1.

In Fig. 3, we show the results of simulations with four
different combinations of boundary conditions and bulk
evaporation rates. In the first four panels Figs. 3(a)-3(d),
we set § =0 and consider the effect of variation in
boundary flux width. Generically, if either the inlet width
wy, or the outlet width w,,, are larger than the emergent
channel size w,., boundary fluxes induce the formation of
multiple channels, as seen in Fig. 3(a). If both are less than
w,, a single channel is favored as in Fig. 3(b). (We note
branching in these settings is possible—Fig. 1(a) shows a
single channel split and consolidate—but only given
conveniently located low-« regions of the initial condition
in the £ <« ¢ limit.) If neither is true, i.e., wiy, < w, < Wy,
then N, channels are created at the outlet and one at the
inlet, as in Figs. 3(c) and 3(d). In Fig. 3(e), we show the
effect of bulk-evaporation driven flow with § > 0, a single
inlet and no outlet. Because the channel width w, < L the
system size, multiple channels form in the bulk, although
their number and width is attenuated with distance from the
inlet. These results may be summarized via a simple
geometric argument suggesting a formula for reliable
branch generation. If the number of channel heads distrib-
uted along the inlet and outlet are not the same, branching
junctions arise in their linking, which is favored by flow
continuity.

Finally, we consider the effects of varying the form of the
erosion threshold function y(¢), via its sharpness @, and
the rate of flux increase, via the ramp-up time 7. Figure 4
shows a grid of eroded patterns corresponding to combi-
nations of these two parameters. Low rates of flux increase

correspond to slow manifolds G2 close to the threshold v,
so small drops in the pressure gradient can yield |Vp|? < .
Conversely, rapidly increasing fluxes induce large pressure
gradients |Vp|? > y before flow reorganization can occur,
leading to large-scale washout. We conclude that 7 > 1 is
necessary for selective erosion. Increasing @ yields more

\ \

ramp-up time T’

| ||/"( {

A 4

erosion sharpness w

FIG. 4. Erosion patterns as functions of flux dynamics and
threshold shape. The solid fraction ¢(x, ) is plotted with the
Fig. 3 color scheme at = 50, subject to varied ramp time 7" and
sharpness w. Increasing T or @ promotes confinement of erosion
to a footprint which is smaller for more slowly increasing fluxes
and larger for sharper thresholds. Boundary fluxes: w;, = 0.5,
Woue = 10, § =0, F =0.5. Sharpness and ramp duration:
o ={1,8,15}, T =1{0,3,10}. Other parameters: grid size
1024%, ¢y =038, ¢.=0.7, 0, =0.02, (=008, &=0.05.
(See SM movie 2 [22] for visualizations of the dynamics of
arborization that correspond to this figure).
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erosion across the domain—consistent with the relationship
between the erosion rate and w as in Fig. 2(b)—and sharper
boundaries between eroded and uneroded regions. This
relates to qualitatively higher rates of erosion in the region
@ < @, corresponding to sharper thresholds. In physical
terms, @ represents the immediacy with which a porous
material’s breaking stress vanishes after a critical amount of
erosion. More selectivity in eroding below the critical solid
fraction is associated with more rapidly vanishing breaking
stresses.

These results are qualitatively similar to observations
from the three-phase model [21], which predicted a
spectrum of patterns from washout to defined channeliza-
tion. Adding a mobile grain phase to this work would
introduce another avenue for flow enhancement with an
independent timescale associated with deposition. The
regions of intermediate phase fraction on the left and
bottom of Fig. 4 could redirect flow away as pores fill
with grains, leading to the concentration of flow in the
most-eroded regions and more defined patterns at
long times.

Conclusions.—Our minimal continuum model for the
coupled dynamics of erosion, flow, and permeability in a
porous material shows how complex branching patterns can
arise from simple causes. While the model and discussion
are rooted in the language of frangible solids, our frame-
work is broadly applicable beyond this setting, to branching
patterns generated by local interactions subject to nonlocal
flow constraints. Generalizing this to biological settings
that feature nonlinear couplings such as that between
nutrient concentration and flow behavior, e.g., if portions
of solid may be flow-seeking or flow-avoiding [14] is a
natural next step.
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