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The recent measurement of a half-integer thermal conductance for the ν ¼ 5=2 fractional quantum Hall
state has confirmed its non-Abelian nature, making the question of the underlying topological order highly
intriguing. We analyze the shot noise at the edge of the three most prominent non-Abelian candidate states.
We show that the noise scaling with respect to the edge length can, in combination with the thermal
conductance, be used to experimentally distinguish between the Pfaffian, anti-Pfaffian, and particle-hole-
Pfaffian edge structures.
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Introduction.—The fractional quantum Hall (FQH) [1,2]
state at filling ν ¼ 5=2 [3] is the prototypical candidate for a
phase of matter with non-Abelian topological order [4].
Such order has attracted immense attention during the last
decades, not least for its remarkably rich theoretical
structure [5], but also as a promising platform for topo-
logical quantum computation [6].
The 5=2 state is believed to consist of two filled lowest

Landau levels (LLLs) with opposite spin polarizations and
one half filled and spin polarized second Landau level
(2LL) [7–13]. For this structure, a wide variety of theo-
retical candidate states have been proposed, among which
the most prominent are the Pfaffian (PF) [4], anti-Pfaffian
(APF) [14,15], and particle-hole Pfaffian (PHPF) [16–19],
all exhibiting non-Abelian order. Also, several Abelian
states have been proposed [20–23]. To date, numerical
simulations seem to favor the APF state [7,24,25], while
tunneling experiments point either toward the APF,
SUð2Þ2, 331, or 113 states [26–28]. All proposed candi-
dates are compatible with the Hall conductance
GH ¼ 5e2=2h, but they differ in their bulk topological
order, manifested by different edge structures [29–31] [see
Fig. 1(a)]. A fruitful route in determining the nature of the
5=2 state is therefore by thermal edge transport experiments
[32–35]. If the edge fully equilibrates due to efficient
interchannel tunneling, the thermal Hall GQ

H and two-
terminal GQ conductances are quantized as

GQ
H ¼ νQκT; GQ ¼ jGQ

Hj; ð1Þ

where κ ¼ π2k2B=3h, T is the temperature, and kB is the
Boltzmann constant. The topological quantity νQ ≡ c − c̄
is the difference in the central charges of the chiral (c) and

the antichiral (c̄) sectors of the edge conformal field theory
[36,37]. With insufficient equilibration, GQ=κT may, how-
ever, take any value between cþ c̄ and jνQj. For an Abelian
edge, c and c̄ coincide with the number of downstream (the
chirality direction set by the magnetic field) and upstream
(opposite direction to downstream) edge channels, respec-
tively [36,37]. By contrast, a chiral Majorana edge mode ψ ,
present only on non-Abelian edges, contributes instead
with cψ ¼ 1=2, implying a half-integer quantization in
Eq. (1). Indeed, Banerjee et al. [34] recently found
GQ=κT ≈ 5=2, a clear signature of non-Abelian order.
This particular value of GQ was further interpreted as
favoring the PHPF state for which νQ ¼ 5=2. The PHPF
edge structure can also be obtained in models with random
puddles of alternating non-Abelian orders [38–43]. At the
same time, theories of partial equilibration have been put
forward, allowing the APF edge to remain a viable
candidate [44–48]. To our knowledge, no reconciliation
between experiment and theory for the pure PF edge, where
GQ

H=κT ¼ 7=2 regardless of equilibration, has so far been
made. Hence, the question whether the ν ¼ 5=2 state
displays APF or PHPF topological order remains open
and pressing.
In this Letter, we propose that shot noise [49,50]

measurements are a powerful tool to distinguish between
all three non-Abelian 5=2 candidate states [see Fig. 1(b)].
We show that in the transport regime with complete edge
equilibration, which requires strong Landau level mixing
(LLM), the dc noise S either vanishes or decreases
exponentially with increasing edge length L. However,
in the transport regime where LLM is negligible but
equilibration within the 2LL is efficient, the APF edge
uniquely exhibits the scaling S ≃ c1 − c2

ffiffiffiffiffiffiffiffiffiffiffiffi
L=leq

p
with
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constants c1; c2 > 0 [see Fig. 1(c)]. Most interestingly, it is
precisely in this semiequilibrated regime that GQ=κT ¼
5=2 for both the APF and PHPF states. It follows that, in
combination with measurements of GQ, the scaling of S
with L uniquely distinguishes between the APF and
PHPF edges.
These disparate scalings follow from a delicate inter-

play of charge and heat transport on the FQH edge. With
strong equilibration, L=leq ≫ 1, where leq is a character-
istic length [53] for charge and heat equilibration [54–57],
noise is generated due to thermal partitioning of the
charge current [58–60]. It is a remarkable consequence
of the chiral edge nature that, when a current is driven
between two contacts along an equilibrated FQH edge,
heat is generated near the downstream contact (the hot
spot), while noise is generated near the upstream contact
(the noise spot) [see Fig. 1(b)]. Thus, noise generation
requires a heat flow upstream from the hot spot to the
noise spot, implying a deep connection between the noise
characteristics and the nature of the heat transport along
the edge. Since the latter is inherited from the bulk
topological order, the topological significance of the noise
scaling follows. For edges with νQ > 0, S ≃ 0 (up to
exponential corrections in L=leq); for νQ ¼ 0, S ≃ffiffiffiffiffiffiffiffiffiffiffiffi
leq=L

p
and for νQ < 0, S ≃ const. Hence, this noise

classification constitutes a powerful probe for the FQH
edge structure and provides a fully electrical method to
detect upstream heat propagation.

To apply this classification to the three non-Abelian
ν ¼ 5=2 edge candidates, we first define for each edge two
length scales l�

eq and leq, which characterize intra-2LL and
complete equilibration, respectively [61]. We assume
l�
eq ≪ leq, which will be justified below. Next, we identify

transport coefficients and noise scaling for the candidate
edges in three transport regimes: L ≪ l�

eq (regime I , clean
regime), l�

eq ≪ L ≪ leq (II , no LLM), and leq ≪ L
(III , full equilibration) (see Table I). For the maximally
chiral PF edge, no backscattering of charge or heat occurs.

(a)

(c) (d)

(e)
(b)

FIG. 1. (a) LLL and 2LL edge structures of PF, APF, and PHPF states. Thick lines: unit-charge bosonic channels; dashed lines: charge
1=2 bosons; dotted lines: Majorana channels. Arrows denote downstream (right-pointing) or upstream (left-pointing) propagation. Black
arrows indicate spin. (b) Schematic setup for measuring the noise S. The contacts are separated by distance L; one of them is biased with
V0. In the equilibrated regime, heat is generated at the hot spot (red dot), while noise is generated due to partitioning of electron-hole
pairs at the noise spot (yellow dot). (c) Shot noise S=ðV0e3=hÞ and thermal conductance GQ=κT of the APF edge as functions of
log½L=l�

eq� for leq ¼ 100 (solid lines) and leq ¼ 1000 (dashed lines). In regime I (see Table I) equilibration and S are weak and
GQ=κT ¼ 9=2. In regime II (weak LLM, but efficient intra-2LL equilibration), S is approximately constant and GQ=κT ≈ 5=2. In
regime III (full equilibration), S is exponentially suppressed andGQ=κT → 3=2. (d) APF edge channel temperature profiles in regime
II with leq=l�

eq ¼ 100 and L ≈ 11.8l�
eq. Heat from the hot spot (L − l�

eq ≲ x≲ L) reaches the noise spot (0≲ x≲ l�
eq). (e) APF edge

channel temperature profiles in regime III with leq=l�
eq ¼ 100 and L ≈ 241l�

eq. The heat reaching the noise spot is exponentially small
in L.

TABLE I. Two-terminal electrical (G) and thermal (GQ) con-
ductances, and scaling of shot noise (S) with length L for PF,
APF, and PHPF edges. Regime I : no equilibration; regime II :
complete 2LL equilibration; regime III : full equilibration. S ≃
0 means exponentially small noise S ∼ e−L=leq . Bold values: APF
and PHPF edges show distinct noise scaling for the same GQ.

Transport characteristics PF APF PHPF

I G=ðe2=hÞ 5=2 7=2 5=2
GQ=ðκTÞ 7=2 9=2 7=2

S 0 ∝ L 0
II G=ðe2=hÞ 5=2 5=2 5=2

GQ=ðκTÞ 7=2 5=2 5=2
S 0 const. 0

III G=ðe2=hÞ 5=2 5=2 5=2
GQ=ðκTÞ 7=2 3=2 5=2

S 0 ≃0 0
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Thus, there is no charge partitioning and S ¼ 0 in all
regimes. Also, for the PHPF edge, charge propagates only
downstream, hence no current partitioning and S ¼ 0 in all
regimes [62]. These results may be contrasted with the APF
edge, which has a richer edge structure and is the focus of
this Letter. In regime I , we assume S ∝ L due to rare
scattering events [58]. In regime III , Eq. (1) gives
νQ ¼ 3=2, which by our classification implies exponen-
tially suppressed S. However, when the LLM is weak
(regime II), most of the noise is generated only in the 2LL
due to a lack of backscattering in the two LLLs (which are
to a large extent decoupled from the 2LL). The 2LL
channels, within which heat flows upstream since
ðc − c̄Þj2LL ¼ −1=2, lead to a constant noise S ≃ c1 −
c2

ffiffiffiffiffiffiffiffiffiffiffiffi
L=leq

p
up to algebraic correction in L. This algebraic

correction originates from the weak heat loss of the 2LLs to
two LLLs. The existence of this noisy regime for the APF
edge is our central observation. To investigate this regime,
we next perform a detailed renormalization group (RG)
analysis [55,66] of l�

eq and leq for the APF edge.
Analysis of equilibration on the APF edge.—The APF

edge consists of one left-moving charge neutral Majorana
channel ψ (with velocity vn) and four charged bosonic
channels ϕi (i ¼ 1;…; 4), where ϕ4 is left moving while
the others are right movers [14,15] [see Fig. 1(a)]. The
action is S ¼ S0 þ Sψ , with

S0 ¼ −
Z

dtdx
X
ij

1

4π
½Kij∂xϕi∂tϕj þ Vij∂xϕi∂xϕj�;

Sψ ¼
Z

dtdx½iψð∂t − vn∂xÞψ �: ð2Þ

Here, the topological matrix K ¼ diagð1; 1; 1;−2Þ in the
basis ðϕ1;ϕ2;ϕ3;ϕ4Þ, and the nonuniversal matrix V
contains on its diagonal all bosonic velocities, while the
off-diagonal elements describe interchannel repulsive inter-
actions. We ignore density-density interactions involving
ψ , since these are RG irrelevant at low temperatures. The
action (2) is integrable and involves no mechanism for
equilibration between the channels. In the absence of such a
mechanism, we have G=ðe2=hÞ ¼ P

i jK−1
ii j ¼ 7=2 and

GQ=κT ¼ 4þ 1=2 ¼ 9=2. We can introduce equilibration
by adding random interchannel electron tunneling [67].
Assuming that channels in the 2LL are spatially far away
from the LLL channels, equilibration occurs dominantly
within the 2LL [46]. We may then add the following
random disorder perturbation [14]:

S2LL ¼
Z

dtdx½ξ2LLðxÞψei2ϕ4þiϕ3 þ H:c:�; ð3Þ

where eiϕ3 annihilates a right-moving electron, while
ψei2ϕ4 creates a left-moving electron. For simplicity, we
take ξ2LLðxÞ as a complex Gaussian random varia-
ble: hξ2LLðxÞξ�2LLðx0Þi ¼ W2LLδðx − x0Þ.

We now analyze the influence of S2LL on the edge
transport by considering the linear RG equation for W2LL.
From the standard disordered averaged RG scheme [68],
we have dW̃2LL=d lnl ¼ ð3 − 2Δ2LLÞW̃2LL. Here, l
denotes the running length scale, Δ2LL is the scaling
dimension of ψei2ϕ4þiϕ3 , and W̃2LL is the dimensionless
disorder strength corresponding to W2LL. Hereafter, all
appearing dimensionless disorder strengths are denoted
with a tilde. When the perturbation (3) is relevant
(Δ2LL < 3=2), the disorder drives the system toward the
fixed point Δ2LL ¼ 1 [14]. The RG flow then introduces an
elastic length scale l0, beyond which disorder mixes the
channels within the 2LL. We define l0 as the scale at which
W̃2LL is of order unity: l0 ∼ aW̃1=ð3−2Δ2LLÞ

2LL;0 , where a is the
UV length cutoff and W̃2LL;0 ≡ W̃2LLðl ¼ aÞ. If the edge
length L is larger than l0, the system flows toward the fixed
point where it finally decouples into three upstream-
propagating neutral Majorana modes ψa (a ¼ 1, 2, 3)
and three downstream-propagating charge bosonic modes
ϕ1, ϕ2, and ϕρ ¼ ϕ3 þ ϕ4 [14,15]. In the vicinity of this
fixed point, l0 constitutes the new UV cutoff for the RG
analysis below.
We then consider the length l�

eq and its scaling with T,
assuming kBT ≫ eV, where V is the voltage bias. We first
consider low temperature (T < T̃ in Fig. 2). In the vicinity
of the fixed point, and in the basis of charged bosons and
neutral Majoranas, the part of Sþ S2LL equilibrating the
2LL reads

Sψρ ¼ −
vρσ
2π

X
a≠b

Z
dxdt∂xϕρψa½RTðxÞLxRðxÞ�abψb:

FIG. 2. Schematic log-log plot of the temperature (T) depend-
ence of equilibration lengths l�

eq (within the 2LL) and leq
(between the LLLs and the 2LL) for strong interactions
Δ2LL < 3=2. l0 is a T-independent elastic length, beyond which
channels in the 2LL mix by disorder and the system enters the
disorder-dominated phase. LT ∝ 1=T (black thin line) is the
thermal length. The scaling of l�

eq and leq changes at T ¼ T̃,
where the transition temperature T̃ is defined as LTðT̃Þ ¼ l0. For
a given edge length L, three transport regimes I , II , and III
are indicated (see Table I). The voltage V replaces T when
kBT ≪ eV.
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Here, RðxÞ is a disorder-dependent SO(3) matrix with
which the bare action together with Eq. (3) becomes
the free-fermion action [14]. Moreover, Lx is the generator
of SO(3), describing rotation around the x axis. Under
the assumption that ξρσ;ab ≡ vρσ½RTðxÞLxRðxÞ�ab is a
Gaussian random variable, hξρσ;abðxÞξ�ρσ;a0b0 ðx0Þi ¼
Wρσ;abδðx − x0Þδaa0δbb0 , the disorder strengths W̃ρσ;ab
renormalize according to

dW̃ρσ;ab=d lnl ¼ ð3 − 2ΔρσÞW̃ρσ;ab ¼ −W̃ρσ;ab; ð4Þ

sinceΔρσ ¼ 2 (with respect to the disordered fixed point) in
the absence of the interactions between the LLLs and the
2LL. When T < T̃, the RG flow in Eq. (4) terminates at the
thermal length LT ∝ 1=T, where the disorder strengths are

W̃ρσ;abðLTÞ ¼ W̃0
ρσ;ab l0=LT: ð5Þ

Here, W̃0
ρσ;ab ≡ W̃ρσ;abðl0Þ. Below, we focus on W̃ρσ ≡

max½W̃ρσ;ab� as it dominates in equilibrating the 2LL.
Beyond LT , W̃ρσ scales classically, leading to

W̃ρσðLTÞ=LT ¼ W̃ρσðl�
eqÞ=l�

eq ∼ 1=l�
eq; ð6Þ

where we defined l�
eq as W̃ρσðl�

eqÞ ∼ 1. Combining Eqs. (5)
and (6), we obtain the low-temperature scaling

l�
eq ∼ L2

T=l0W̃0
ρσ ∝ 1=T2; ð7Þ

in agreement with Ref. [69]. For T > T̃ (see Fig. 2), the RG
flow terminates at l ¼ LT before reaching the disorder
fixed point. A similar RG analysis (see Supplemental
Material [70]) results in the high-temperature scaling
l�
eq ∼ LTðl0=LTÞ3−2Δ2LL ∝ T2−2Δ2LL . The complete temper-

ature scaling of l�
eq is depicted in Fig. 2. The scalings match

at the crossover scale LT ∼ l0 ⇔ T ∼ T̃. We now return to
the vicinity of the fixed point and consider weak random
electron tunneling between edge modes of the LLLs and the
2LL. The perturbing action reads

SLLM ¼
Z

dtdxeiϕ1ðxÞe−2iϕρðxÞ
�
ξLLM;1ðxÞ

�
ψ2 − iψ3

2

�

þξLLM;2ðxÞ
�
ψ2 þ iψ3

2

�
þ ξLLM;3ðxÞψ1 þ H:c:

�
;

where ψ1 ≡ ψ , ψ2 ¼ eiðϕ3þ2ϕ4Þ þ e−iðϕ3þ2ϕ4Þ, and ψ3 ¼
−iðeiðϕ3þ2ϕ4Þ − e−iðϕ3þ2ϕ4ÞÞ. We neglect tunneling between
ϕ2 and the 2LL, assuming negligible spin-flip tunneling.
With respect to the fixed point, all tunneling operators
have scaling dimensions ΔLLM ¼ 2. The disorder
strengths are assumed Gaussian: hξLLM;iðxÞξ�LLM;i0 ðx0Þi ¼
WLLM;iδðx − x0Þδii0 . The disorder strengths W̃LLM;i then
renormalize according to

dW̃LLM;i=d lnl ¼ ð3 − 2ΔLLMÞW̃LLM;i ¼ −W̃LLM;i: ð8Þ

Again, we consider only the dominating disorder
W̃LLM ≡max½W̃LLM;i�. Following the procedure leading
to Eqs. (5)–(7), we arrive at the length scale leq, governing
the LLM. It scales as

leq ∼ L2
T=l0W̃0

LLM ∝ 1=T2; ð9Þ

where W̃0
LLM is the disorder strength with the largest value

at l ¼ l0. The low T scaling of leq is depicted in Fig. 2.
Our results (7) and (9) imply that l�

eq ≪ leq (in view of
W̃0

LLM ≪ W̃0
ρσ, see Discussion below and Supplemental

Material [70]), and thus the transport regime II holds in a
broad temperature window.
Numerical computation of the noise.—Next, we compute

the noise scaling using the model from Refs. [58,59]. We
introduce a set of virtual reservoirs attached to each channel
along the edge. Such reservoirs define and maintain local
equilibrium conditions in each channel [56]. In the con-
tinuum limit, we obtain a set of transport equations for the
local voltages, local temperatures, and the local noise along
the edge [70]. By numerically solving these equations for
the APF edge, we obtain the plots in Fig. 1. In regime I , S
rises first linearly, and then drops exponentially in L=l�

eq.
Around log½L=l�

eq� ≈ 2 (regime II), S ≃ c1 − c2
ffiffiffiffiffiffiffiffiffiffiffiffi
L=leq

p
,

with c1 ∼ 0.1 and c2 ∼ 0.01 [70]. The algebraic corrections
to the constant scaling become suppressed for larger leq

and develop into a plateau. On this plateau, GQ=κT ≈ 5=2.
In regime III , S ≃ e−L=l

�
eq and GQ=κT ¼ 3=2. Figs. 1(d)

and 1(e) depict the edge channel temperature profiles in
regimes II and III , respectively. In regime II , heat
flows ballistically upstream with diffusive corrections from
LLM. In regime III , the upstream heat propagation is
exponentially suppressed in L.
Discussion.—We now justify the assumption of weak

LLM, i.e., that typical experimental conditions favor
regime II . Since ϕ1 and the 2LL (same spin) are spatially
far apart, we assumeweak electron tunneling between these
levels. By contrast, ϕ2 and the 2LL are spatially closer, but
have opposite spin. Tunneling between them is therefore
also strongly suppressed, assuming no (or only weak) spin-
rotation symmetry breaking (see Supplemental Material
[70]). The detected upstream heat propagation at ν ¼ 5=2
[72] provides further support for regime II .
Our proposed measurement of S should be feasible with

present technology. We envision a device capable of
measuring both GQ and SðL=l�

eqÞ under no-bulk leakage
conditions [34,57]. Measuring SðL=l�

eqÞ can be performed
either by varying the intercontact distance L, e.g., with a
modulation gate, or by using several contacts spaced along
the edge. Another possibility is to fix L and instead tune the
equilibration length, as was recently demonstrated at
ν ¼ 2=3 [73]. Our setup allows, in principle, for observa-
tion of a transition of GQ=κT from 5=2 to 3=2 with
increasing L, which would strongly favor the APF state
(see Table I).
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Summary.—We studied shot noise S on the ν ¼ 5=2
FQH edge for the three main edge candidates consistent
with half-integer quantization ofGQ: Pfaffian, particle-hole
Pfaffian, and anti-Pfaffian. Assuming full equilibration,
which requires strong Landau level mixing, we argued that
S vanishes or decays exponentially in the edge length for all
three candidates. However, in the regime where Landau
level mixing is negligible, but intra-Landau level equi-
libration is efficient, only the anti-Pfaffian edge generates
nonvanishing S. We demonstrated that a transport regime
with GQ=κT ¼ 5=2 in combination with S ≃ c1 −
c2

ffiffiffiffiffiffiffiffiffiffiffiffi
L=leq

p
uniquely singles out the anti-Pfaffian. By

contrast, for the same GQ, the scaling S ≃ 0 points instead
strongly toward the particle-hole Pfaffian. The Pfaffian
edge exhibits robustlyGQ=κT ¼ 7=2 and S ¼ 0. We expect
our results to be very useful for experimentally deter-
mining the ν ¼ 5=2 edge structure. Our analysis can be
extended to other mechanisms of partial equilibration (see
Supplemental Material [70]) and other FQH states.
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