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(Received 22 April 2020; accepted 11 September 2020; published 9 October 2020)

Generating laboratory flows resembling atmospheric turbulence is of prime importance to study the
effect of wind fluctuations on objects such as buildings, vehicles, or wind turbines. A novel driving of an
active grid following a stochastic process is used to generate velocity fluctuations with correlation lengths,
and, thus, integral scales, much larger than the transverse dimension of the wind tunnel. The combined
action of the active grid and a modulation of the fan speed allows one to generate a flow characterized by a
four-decade inertial range and an integral scale Reynolds number of 2 × 107.
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Introduction.—Turbulence accompanies many aspects of
everyday life. For instance, wind-induced turbulence dis-
tributes aerosols like seeds or fertilizing dust but can also
cause extreme situations like typhoons or hurricanes. In the
past decades, turbulent wind has gained special interest as a
source of energy [1,2].
The strength of turbulence is characterized by the

Reynolds number

Re ¼ UL
ν

; ð1Þ

where U and L are typical velocity and length scales,
respectively, characterizing the large-scale structure of the
flow, and ν is the kinematic viscosity of air. Taking a typical
atmospheric wind speed of 10 ms−1 and a length L >
1 km (the length scale on which the turbulence is created
by shear) leads to values of Re of the order of 109 and
larger. This number determines the length and timescales
for which turbulent fluctuations can be expected. Indeed,
the smallest scale, where turbulent fluctuations can subsist
in a fluid, are of the order of the Kolmogorov or dissipation
length,

η ¼ L

Re3=4
; ð2Þ

which shows that, for Reynolds numbers characterizing
wind, the range of scales between the integral scale L and
dissipation length scale η is very wide.
There is a special interest for these small scales, as the

statistics of the fluctuations change fundamentally with
decreasing scale. Whereas nearly Gaussian distributed
fluctuations are characterizing the large scales, the small-
scale fluctuations show heavy-tailed statistics, where
extreme events with values of several standard deviations
become much more likely than in a Gaussian field. Since
atmospheric turbulence is driven on large scales larger than

several kilometers, even objects as big as wind turbines or
houses are exposed to such small-scale extreme events [3].
This challenges the desire to generate turbulent flow
conditions, which resemble the atmospheric turbulence
under laboratory conditions.
Controlled laboratory experiments of turbulent wind are

most conveniently performed in wind tunnels, where the
turbulent fluctuations are generated by blowing air through
a grid. Such flows are restricted by several constraints.
First, in order to avoid the influence of incompressibility,
laboratory wind speeds should not exceed several tens of
meters per second. Second, the spatial extent of the large-
scale velocity fluctuations which are generated at the grid is
mostly of the order of one meter (a fraction of the diameter
of the wind tunnel), corresponding to the length scale over
which a velocity difference (shear) can be sustained.
The biggest wind tunnels [4–6] allow one to increase
the Reynolds number up to the order of millions, still well
below the values of atmospheric turbulence. Finally, the
third quantity determining Re is the kinematic viscosity,
which can be lowered using different fluids, such as
pressurized SF6 [7], cryogenic N2 [8], or low-temperature
He [9–11]. However, the use of such fluids largely
complicates the experimental installations.
An additional way to increase the Reynolds number is to

act directly on the nature of the velocity fluctuations. One
possibility to do so is to vary the shape of the grid [12].
Furthermore, instead of a grid with static grid bars, active
grids can be used in order to enhance the intensity of the
velocity fluctuations for a given mean wind speed [13]. A
recent overview on active grids is given by Ref. [14]. Such
grids allow one to increase the integral length scale
compared to the mesh size of classical grids [13], but
the large scales were found to be limited by the wind tunnel
size [15,16]. The use of active grids introduces a
new control parameter, corresponding to the temporal
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modulation of the grid bars allowing one to modify the
properties of the generated turbulence [17].
In this Letter, an experimental approach is presented to

generate a turbulent flow with an integral length scale much
larger than the tunnel width, using a stochastic process for
the active grid motion. The key idea is that, whereas
the width of the tunnel is usually not larger than several
meters, and the maximum transverse turbulent length scale
is bounded by a fraction of this, the streamwise length of
the tunnel may exceed this size so that larger correlation
lengths can be observed in that direction. It is found that,
using such long longitudinal correlation lengths, the
obtained turbulence organizes itself in such a manner that
it resembles a small-scale turbulence nested into a turbulent
environment driven on very large scales. Intuitively, this
corresponds to the case where a slice, of the size of the
tunnel, is cut out of a much-larger-scale turbulence.
Experimental setup and turbulence excitation.—

Measurements are made in the closed test section of the
Göttingen type wind tunnel in Oldenburg, having a cross
section of 3 × 3 m2 and a length of the measurement
section of 30 m [18]. Wind velocities up to 42 ms−1
can be generated by four fans with a power of 110 kWeach.
An active grid [18] with 80 rotating shafts and a mesh

width ofM ¼ 0.143 m is mounted to the nozzle (Fig. 1). To
the shafts rectangular flaps are mounted, which allow one
to change the local blockage by their deflection angle. The
shafts are separated in the middle of the grid and controlled
individually by servo motors. A predefined motion protocol
running on a real time controller defines the current shaft
positions and can simultaneously modulate the wind tunnel
fan speed and thereby the wind tunnel velocity.
To characterize the flow, an X-type hot wire 55P61 probe

by Dantec Dynamics is placed on the center line of the
closed test section. The hot-wire signals are sampled with a
frequency of 20 kHz after being low-pass filtered at 10 kHz.
The measurements are repeated for different downstream
positions from 1.43 to 20 m (which correspond to
10–140M) using an in-house built 20 m traversing system.

In this Letter, a new approach to create atmosphericlike
turbulence with large integral length scales is worked out.
The idea is to use a stochastic process (e.g., Ornstein-
Uhlenbeck process), which exhibits a broadband decaying
energy spectra on large scales, for the motion protocol of
the active grid, defining the deflection angle of the flaps
(see further details in Ref. [19]). Half the shafts are moving
according to a predefined stochastic process, while the
other half are following a motion to compensate the
generated global blockage change. In consequence,
the global blockage is kept constant, whereas the local
blockage can vary strongly on short timescales. To ensure
an undirected flow, neighboring shafts are pointing in
opposite directions. Furthermore, the excitation can be
expanded to even larger scales by a dynamic variation of
the fan speed using the same type of stochastic process.
Analysis of the generated flow.—Two experimental

approaches are presented. First, only the active grid is used
for excitation, and the evolution of the turbulence
downstream is discussed. Second, results of the additional
manipulation of the flow by the wind tunnel fans are shown.
In the first approach, the fan speed is kept constant,

generating a mean wind speed behind the active grid of
roughly ū ¼ 7 ms−1. Measurements are repeated for differ-
ent downstream positions with the same 10 min lasting
active grid motion protocol.
The aim is to generate very high Reynolds number

turbulence with well-developed small and intermediate
scales. Therefore, the downstream evolution of the power
spectral density (PSD) of the velocity fluctuations is
assessed (Fig. 2). Two frequencies fFlap ≔ ðū=LFlapÞ and
fWT ≔ ðū=LWTÞ are defined, associated with the size of the
flaps of the active grid LFlap ¼ 0.143 m and with the size of
the wind tunnel LWT ¼ 3 m, respectively.
Close to the active grid (20M), the spectrum seems to be

the superposition of two spectra, one containing energy in
the highest frequencies (f ≥ fFlap) and one containing
energy in the lower frequencies (f ≤ fWT). The high-
frequency part matches with the expected spectrum of
the static grid (indicated by a colored dotted curve). In
between (fWT ≤ f ≤ fFlap), some lack of energy (or gap) is
found. A − 5

3
power law exponent, as expected for fully

developed turbulence [21], is observed only for the low-
and high-frequency parts.
Farther downstream, the energy for the highest frequen-

cies (40M) and low frequencies (80M) decreases, whereas
the lack of energy in the medium frequencies is filled up by
an energy cascade which extends now from the large scales,
all the way down to the small scales. Even farther down-
stream (90M and 100M), the − 5

3
power law spreads over a

wide range of frequencies.
A constant slope from roughly 2 × 10−1 to 3 × 102 Hz

(≈3 decades) can be recognized for the far downstream
position (100 M). The gap between lower and higherFIG. 1. Active grid installed in the closed test section.
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frequencies is now closed, as its power spectra seem to have
merged to form one large cascading process.
To quantify the range over which a constant exponent

(close to − 5
3
) is found in the spectrum, a parameter D (in

units of decades 10D) is introduced. To do so, the spectrum
is fitted by a polynomial in the frequency range of 10−1 to
5 × 103 Hz. Regions in the spectra with almost no curva-
ture are estimated by the second derivative of this fit. The
extent D of the power law region is determined by the part
of the (smoothed) spectra where the second derivative is
below a certain threshold (results do not depend sensitively
on the choice of the threshold).
Close to the grid, D decreases and stays close to a unity

value until, at a downstream position of approximately
86M, D rapidly increases (Fig. 3). After this rapid phase-
transition-like behavior to a new developed turbulence
state, D increases further downstream until a value of
2.4 decades is observed at the farthest downstream posi-
tions (125–140 M).
Besides the power spectra, characterizing the variance of

the fluctuations, intermittency is of particular interest.
Therefore, the scale, or τ, dependence of the prob-
ability density functions (PDF) of velocity increments

uτ ¼ uðtÞ − uðtþ τÞ is investigated. The widths or the
variances, hu2τi, is directly connected to the PSD, as seen by
the Wiener-Khinchin theorem [22]. To describe the shape
of the PDFs at the timescale τ, a shape factor

λ2 ¼ 1

4
ln

� hu4τi
3hu2τi2

�
ð3Þ

is analyzed [23], which is shown for different downstream
positions in Fig. 4 in a semilog representation.

FIG. 3. Downstream development of the length D of the range
of scales over which a constant power law exponent is observed
(in decades).

FIG. 2. Power spectral density (smoothed by exponentially
growing bins) of generated turbulence at different downstream
positions. For 20M, the expected spectrum by the static grid is
illustrated by a dotted curve. The statistical fluctuations at small
frequencies are an artifact of the random signals that drive the grid
(see further details in Ref. [19]); they are the same for all
downstream positions.

FIG. 4. Shape factor of generated turbulence at different
downstream positions (colored dashed lines correspond to 0,
respectively). Increment PDFs are shown exemplarily for the
scales of the flaps, TFlap, and the wind tunnel, TWT, for the 100M
position.
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On large scales, the PDFs of the velocity increments, uτ,
are Gaussian and the shape factor is 0. For smaller scales,
the distributions become more heavy tailed, a phenomenon
known as intermittency. This changing shape of the PDFs
can be quantified by the increase of λ2, which is connected
to the increase of the dissipation rate fluctuations
hðln ϵrÞ2i ∝ λ2ðrÞ. Following classic phenomenology
[24], the turbulent cascade is characterized by a logarithmic
increase of the shape factor

λ2ðτÞ ¼ ½Λ2
0 − μ lnðτÞ�=9: ð4Þ

with decreasing scales up to the largest intermittency value
on small scales defined via Λ0 [25]. The so-called inter-
mittency factor μ can be estimated by the slope of λ2ðτÞ or
by the sixth-order structure function [26].
The closest upstream position (20M) shows a significant

increase of λ2 only for scales smaller than the flap size
TFlap ≔ ðLflap=ūÞ (Fig. 4). Distributions close to Gaussian
ones are found for τ ≥ 0.1 s. The logarithmic increase of
the shape factor for smaller τ values shows where typical
turbulent behavior is found, consistent with the results of
the power spectrum.
Farther downstream (40M), the shape factor increases to

small scales in two steps with a plateau close to TFlap. The
flow here seems to be dominated by two regions of
different scales—one smaller than TFlap and one between
TFlap and TWT ≔ ðLWT=ūÞ. Farther downstream (80M), the
two regions begin to merge. At the far downstream position
(100M), the logarithmic law is extended over a larger range
of scales, consistent with the findings of the extended
scaling range in the PSD. Evaluating the slope in the
semilog plot from 2 × 10−3 to 1 s after Eq. (4), the value
μ ¼ 0.258 is obtained. This is in the expected range
between 0.2 and 0.3 for ideal turbulence [26,27].
Consistent results are found by analysis of the sixth-order
structure function.
In the second experimental approach, a low-frequency

modulation of the wind tunnel fan speed by a stochastic
process is added. The resulting mean wind speed
ū ¼ 8.4 ms−1 is slightly increased. Measurements are done
for 100 min composed in ten independent 10 min intervals.
The temperature was measured and found to be stable
within 0.2 K.
The PSD and the corresponding behavior of λ2 for the far

downstream (100M) position of this case, where both the
fan and the active grid are exciting the flow, are also shown
in Figs. 2 and 4 as upper red curves. It can be seen that more
energy is fed into the system on larger scales and properties
of ideal turbulence are extended over a wider range. This
corresponds to an even higher Re turbulence state for which
a − 5

3
power law decay in the PSD over ≈4.5 decades and a

logarithmic increase of λ2 over about four decades is found.
The intermittency factor of μ ¼ 0.318 is slightly increased.

Besides these statistical features of turbulence, the length
scales are evaluated. The integral length scales are given by

Lii ¼ ū
Z

∞

0

RiiðτÞdτ ð5Þ

with RiiðτÞ the streamwise autocorrelation function of the i
component of the velocity fluctuations. The isotropic
definition of the Taylor scale

λT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02=ð∂u0=∂xÞ2

q
ð6Þ

is calculated by the velocity fluctuations u0 in the stream-
wise (x) direction. The length scale is numerically esti-
mated for different time lags τ with the assumption of

frozen turbulence and ð∂u0=∂xÞ2 ≈ ðūτÞ−2hu2τi [28]. By a
linear fit, λT is extracted closed to τ ¼ 0. These length
scales are used to calculate the integral scale Reynolds

number ReL ¼
ffiffiffiffiffiffi
u02

p
L=ν and the Taylor Reynolds num-

ber ReλT ¼
ffiffiffiffiffiffi
u02

p
λT=ν.

For the case of active grid excitation, an integral length
scale of L11 ¼ 6 m and Reynolds numbers of ReL ¼ 4.4 ×
105 and ReλT ¼ 3.230 are achieved. Combined with the
additional dynamic fan speed variation, an integral length
scale of L11 ¼ 120 m and Reynolds numbers of ReL ¼
2.2 × 107 and ReλT ¼ 12.800 are estimated, comparable to
atmospheric flows with values of about 10.000 [29]. The
integral length scales of the transversal component
are found to be L22 ¼ 0.185 m (active grid) and L22 ¼
0.505 m (active grid and fan excitation) due to the
geometry of the wind tunnel. Most interestingly, the
intermittency of velocity increments measured by the shape
factor λ2 behaves as if L22 is of the size of L11 as is shown
in Fig. S3 in Supplemental Material [19].
Conclusion.—The new approach of excitation of a

turbulent flow on scales larger than the experimental setup
itself seems to drastically increase the attainable Reynolds
number in wind tunnel turbulence. The investigation of
such flows needs long wind tunnels. In the present setup,
measurements 80M behind the grid showed the merger of
the spectral ranges associated with small- and large-scale
excitation, respectively. At positions x ≥ 100 M behind the
grid, a continuous scaling range of more than four decades
and an integral length scale of more than 100 m were
measured.
The analysis of the transverse velocity component is

showing comparable results like the logarithmic behavior
of the shape factors for timescales up to 0.5 s, indicating
approximate isotropy in the small scales (for further
discussion see [19]).
It is puzzling that the generated flow shows, at the small

scales, characteristics of turbulence with scales larger than
the width of the wind tunnel. A first answer is obtained by
realizing that the energy fluctuations are generated
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differently in the present case. Whereas in classic grids a
transverse shear is generated by the grid bars, in the present
case the active grid and wind tunnel fans add a low-
frequency longitudinal shear pattern to this. This allows
one to inject energy into the turbulence at longitudinal
scales beyond the tunnel width (for further discussion,
see [19]).
The presence of energy at these low frequencies thereby

may act, through nonlocal triadic interaction, as a catalyst
for the nonlinear activity at much smaller scales [30–32].
The rapid filling of the spectral gap, observed in Fig. 2,
seems to be a direct consequence of this. The low-
frequency excitation is therefore not purely decorative
but allows one to attain turbulence over a wider range of
scales than normal, high-frequency excitation alone would
allow one to attain. In our opinion, it is important that
this is confirmed by the shape factor which shows a large
scaling range, reminiscent of very large Reynolds number
turbulence.
Thereby, the present investigation allows one to inves-

tigate very high Reynolds number turbulence, with small
scales which are still relatively large, enabling the experi-
mental study of the interaction of small-scale high
Reynolds number turbulence in the laboratory. This opens
interesting new rescaling applications for experimental
investigations of the impact of high Re turbulence on
objects, like the impact of turbulent wind on wind turbines.
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