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Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but
improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge.
Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the
spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only
linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent
pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying
the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows
the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and
even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement
of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of
magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply
to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.
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Hybrid quantum systems combining completely differ-
ent physical systems can realize new functionalities that the
individual components can never offer [1,2]. The strong
coupling regime of interactions between these different
subsystems, where coherent interactions dominate dissipa-
tive processes, is at the heart of implementing more
complex tasks such as quantum information processing.
However, couplings between different physical systems are
often extremely weak, and strong coupling has been
actively pursued since the birth of hybrid quantum systems.

Recently, interfacing solid-state spins with quantum
nanomechanical elements has attracted great interest
[3-21]. This hybrid spin-mechanical system takes advan-
tages of the long coherence time of solid-state spins
[22-47] and the enormous Q factors of nanomechanical
oscillators [48], and has wide applications ranging from
quantum information processing to quantum sensing [49].
To construct a spin-mechanical setup, solid-state spin
qubits like nitrogen-vacancy (NV) centers in diamond
can couple to nanomechanical oscillators either through
mechanical strain [3-10] or via external magnetic field
gradients [11-16]. However, none of these existing systems
have reached the strong coupling regime thus far and novel
approaches are needed to improve the spin-phonon and the
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spin-spin interactions such that they can enter the strong
coupling regime.

In this Letter, we introduce an experimentally feasible
and simple approach that can exponentially enhance the
spin-phonon, and the phonon-mediated spin-spin couplings
in a spin-mechanical system using only linear resources.
Through modulating the spring constant of the cantilever in
time, we can acquire a tunable and two-phonon drive to the
mechanical mode [50], thus amplifying the mechanical
zero-point fluctuations [51-56]. This amplification directly
enhances the spin-phonon magnetic or strain coupling
but without the need to use additional nonlinear resources
[57-60]. Thus, this proposal could implement nonlinear
processes with only linear resources, and significantly
simplifies the experimental realization. We show that the
spin-mechanical system can be driven from the weak-
coupling regime to the strong-coupling regime, and even
the ultrastrong-coupling regime. When considering multi-
ple solid-state spins coupled to the same cantilever in the
dispersive regime [61,62], this method gives rise to a large
enhancement of the spin-spin interactions between different
spins, typically two orders of magnitude stronger than that
without spring constant modulation. As an intriguing
application, we show how this approach allows us to
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generate spin squeezed states with high qualities even in the
presence of large dissipations. The proposed method is
general, and can apply to other defect centers or solid-state
systems coupled to a quantum nanomechanical element.
Related approaches using bosonic parametric driving for
spin squeezing have been considered in the context of
trapped ions [63] and cavity QED [64]. This work differs
fundamentally from these proposals with a markedly
different kind of hybrid spin-mechanical system.

The setup.—We consider the spin-mechanical setup, as
illustrated in Fig. 1(a), where a single NV center is mag-
netically coupled to the mechanical motion of a cantilever
with dimensions (1, w, t) via a sharp magnet tip attached to its
end. By applying a periodic drive to modulate the spring
constant of the cantilever [50], the zero-point fluctuations of
the mechanical motion can be amplified. This effect can be
realized experimentally by positioning an electrode near the
lower surface of the cantilever and applying a tunable and
time-varying voltage to this electrode [50]. The gradient of
the electrostatic force from the electrode has the effect of
modifying the spring constant [65].

For single NV centers, the ground-state energy level
structure is shown in Fig. 1(b), with the ground triplet states
|mg =0,£1), and the =zero-field splitting D = 2zx
2.87 GHz between the degenerate sublevels |m, = +1)
and |m, = 0). We apply a homogeneous static magnetic
field By, to remove the degenerate states |m, = +1) with
the Zeeman splitting 6 = 2g,4pBgaic, Where g, ~2 and
upg = 14 MHz/mT are the NV’s Landé factor and Bohr
magneton, respectively. We further apply dichromatic
microwave classical fields B (1) = BF cos(wif + ¢.)
polarized in the x direction to drive the transitions between
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FIG. 1. (a) Schematic of a single NV center magnetically

coupled to a silicon cantilever mechanical resonator, whose
spring constant is periodically modulated. The NV center is
set just on the top of the corresponding magnet tip with a distance
h ~ 25 nm. (b) Level diagram of the driven NV center electronic
ground states [m, = 0, +1). (c) Level diagram of the dressed spin
basis states.

the states [0) and |+ 1). In the rotating frame with the
microwave frequencies w., we obtain the Hamiltonian
Hyy = 32 jma =851 Ul + (2;/2)(10) (j| + 1) (01), where
A, =|D-w, +58/2| and Q, = g,ugBE/\/2. In the fol-
lowing, we restrict the discussion to symmetric conditions:
Ai:Aanin:Q.

The Hamiltonian for the nanomechanical resonator with
a modulated spring is H .. = p2/2M + 1 k(t)2?, where p,
and Z are the cantilever’s momentum and displacement
operators, with effective mass M and fundamental fre-
quency ,, The spring constant of the cantilever is
modified (pumped) at a frequency 2w, by the electric
field from the capacitor plate, k() = ko + k,(#), where
ky = Mw?, is the fundamental spring constant, and the
time-dependent  correction item  k.(z) = 0F,/0z =
Akcos(2w,1) [65]. Here, F, = 0(C,V?)/(20z) is the
tunable electrostatic force exerted on the cantilever by
the electrode [50], with C, the electrode-cantilever capaci-
tance, and V(¢) the time-dependent voltage, which is
assumed to have the form V(1) =V, +V,cos2w,t.
Then, we can obtain Ak = (8°C,/0z*)V,yV ,. Expressing
the momentum operator p, and the displacement operator Z
with the oscillator operator & of the fundamental oscillating

mode and the zero field fluctuation z,,; = \/#/2M®,,, i.e.,
p. = —i(Mhw, /2)"*(a-a") and 2 =z,(a" +a), we
obtain (2 = 1) [65]

A

Hypee = 0,070 — Q, cos(2w 1) (4" + a)?, (1)

where Q, = —Al’cz%pf /2 is the classical drive amplitude.

The Hamiltonian A, = uBgeGm23'Z describes the mag-
netic interaction between the NV spin and the cantilever’s
vibrating mode, with G,, the magnetic field gradient. We
switch to the dressed state basis {|d) = 1/v2(] +1) — |-
1)), |g) = cos@]0) —sin@|b), |e) = cosO|b) + sinH|0)},
with [b)=(|+1)+]—=1))/v2, and tan(20) =—v2Q/A,
as shown in Fig. 1(c). We assume that the transition
frequency between the dressed states |g) and |d) becomes
comparable with the oscillator frequency, i.e., wgy ~ @,,.
The total Hamiltonian for this hybrid system under the
rotating-wave approximation by dropping the high fre-
quency oscillation and the constant items can be simplified
as [65]

N o) Q
HTotal = 5m£l+€l + %62 - 7 (aﬂ + &2)
+ (@' +as.), 2)

where the coefficients are 6, = w,, — ®,, 84y = W4y — @,
A= —ppgeGuypsing, 6.=(|d)(d|-[g9)(g]), &,=Id){d,
and 6_=|g)(d| [11]. Note that the above model
Hamiltonian can also be realized for the case where NV
spins are coupled to a nanomechanical cantilever via
mechanical strain [65].
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Enhancing the spin-phonon interaction.—Considering
the Hamiltonian (2), we can diagonalize the mechanical part
of Hryy by the unitary transformation U (r) = exp[r(a®—
a'?)/2], where the squeezing parameter r is defined via the
relation tanh 2r = Q,/5,,. Then, we can obtain the Rabi
Hamiltonian in this squeezed frame [65]

Here, A,, = §,,/ cosh2r. We have neglected the undesired
correction to the ideal Rabi Hamiltonian in the large ampli-
fication regime. This term (with coefficient le™"/2) is
explicitly suppressed when we increase the squeeze param-
eter r, and is negligible in the large amplification regime
1/e" ~ 0. More importantly, we can obtain the exponentially
enhanced spin-phonon coupling strength A = de’/2,
which can be orders of magnitude larger than the original
coupling strength as shown in Fig. 2(a), and comparable with
A,, and 64, or even stronger than both of them.

To quantify the enhancement of the spin-phonon cou-
pling [76], we exploit the cooperativity C = 1?/T,,7xnv-
Here, I, and yNy correspond to the effective mechanical
dissipation rate and the dephasing rate of the spin,
respectively. To circumvent the detrimental effect of
amplified mechanical noises, a possible strategy is to use
the dissipative squeezing approach [53,77,78], in which an
additional optical or microwave mode is added to the
system, and is used as an engineered reservoir to keep the
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FIG. 2. (a) Cooperativity enhancement Cg/C and the spin-
phonon coupling enhancement A.;/A versus the squeezing
parameter r, with §,, = 104. (b),(c) Quantum dynamics of the
mechanical resonator and NV spin with the two-phonon drive
(r = 3) or without it (r = 0), where the parameters are 5,, = 4,
049 =0, I'S) = ynv = 0.14. The mechanical mode and NV center
are initially prepared in the vacuum state |0),, and dressed state
|d), respectively.

Bogoliubov mode in its ground state [65]. This steady-state
technique has already been implemented experimentally
[53,77,78]. In this case, the squeezed phonon mode
equivalently interacts with the thermal vacuum reservoir,
and we can obtain the master equation in the squeezed
frame [65] p = i[p, HS ;] + TS, D[alp + ynvD[6,]p, where
IS, is the engineered effective dissipation rate resulting
from the coupling of the mechanical mode to the auxiliary
bath. Therefore, we can also define the effective cooper-
ativity Cs = A3/Tirny-

In Fig. 2(a) we plot the cooperativity enhancement
Cs/C~ e’ /4, as well as the spin-phonon coupling
enhancement A./A, versus the squeezing parameter r.
We find that increasing the parameter r enables an
exponential enhancement in the spin-phonon coupling,
thus directly giving rise to the cooperativity enhancement.
Figures 2(b) and 2(c) show the quantum dynamics of the
spin-mechanical system for the cases when the spring
constant is modulated or not. As the spring constant is
modulated, the system can be pumped and driven from the
weak-coupling regime to the strong-coupling, or even the
ultrastrong-coupling regime.

Enhancing the phonon-mediated spin-spin interaction.—
We now consider multiple NV spins coupled to the
cantilever through either magnetic or strain coupling.
When the spring constant of the cantilever is modulated,
we can obtain the following Hamiltonian describing the
coupled system [65]

A

NS, .
HY .= Aata+ Z [%oé + @ +a)sk|. (4)
Jj=1

In the following, we set 525] = 0 for simplicity. We apply
the unitary polaron transformation U/ = e"iZ 1o f R bi» With
Z=i>¥ m(a" —a)s% and the Lamb-Dicke condition
m = A%/A,, < 1. In this case, the phonons are only
virtually excited and can mediate effective interactions
between the otherwise decoupled solid-state spins [3,13].
Then we can obtain the effective spin-spin interactions [65]
H. = >N A*l6%, where A = (1 + exp4r)(Aik/
85,,) is the effective coupling strength between the jth
and the kth NV spins via the exchange of virtual phonons.
Here the effective coupling strength for the phonon-
mediated spin-spin interactions has an amplification factor
e*", and can be orders of magnitude larger than that without
mechanical amplification. In the case of homogeneous
coupling, we have

FIOAT :Aj)zcv (5)

where A = (1 + exp4r)(42/86,,), and J, = Y| 8. This
Hamiltonian corresponds to the one-axis twisting interac-

tion [79] or equivalently belongs to the well-known Lipkin-
Meshkov-Glick (LMG) model [80,81].
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Squeezing parameter 7

FIG. 3. The enhanced effective spin-spin coupling strength A
varying with the squeezing parameter » € [0, 5] (a) and the pump
amplitude Q,/6,, € [0.9,1) (b), with different constraint = 0.2
and n = 0.1. (c) The squeezing parameter r versus &,/5,,. Here
we assume that the effective spin-spin coupling strength without
the two-phonon drive (r = 0) is Ag ~0.14.

Figure 3 shows the ratio of the enhanced spin-spin
coupling strength A to the bare coupling A as a function of
the parameter r as well as the pump amplitude Q,/5,,.
Increasing the mechanical parametric drive gives rise to a
large enhancement of the phonon-mediated spin-spin
interaction, typically two orders of magnitude larger than
the bare coupling. Note that since the phonon modes have
been adiabatically eliminated, this amplified spin-spin
coupling does not rely on the specific frame of phonons.
This large, controllable phonon-mediated interaction
between NV spins is at the heart of realizing many quantum
technologies such as quantum computation and simulation.

Applications.—We now consider generating entangled
states with this setup in the presence of dissipations. Here,
we focus on entangling multiple separated NV spins
through exchanging virtual phonons [65]. The one-axis
twisting Hamiltonian (5) can be used to produce spin
squeezed states which generally exhibit many-body entan-
glement. Taking into account the effect of spin dephasing,
the system is described by the following master equation
p=ilp. Hoar] + > yavD[61]p. Here, we investigate
the metrological spin squeezing parameter &%, the spin
squeezing parameter £ [82], and the metrological gain (the
gain of phase sensitivity relative to the standard quantum
limit) (Afsqr/A0)? [83]. When & /g < 1, the states can be
shown to be entangled, and have direct implications for
spin ensemble-based metrology applications [(Afsq/
A6)? > 1] [83].

Figures 4(a) and 4(b) show the time evolution of the spin
squeezing parameter fé /R and metrological gain under
different r. For a fixed interaction time and in the presence
of spin dephasing, the spin squeezing parameter & /g and
metrological gain can be improved significantly by increas-
ing r. Without mechanical amplification, the spin-squeezed
state is seriously spoiled by the detrimental decoherence.
However, when modulating the spring constant of the
mechanical cantilever and increasing the pump amplitude
Q,, to a critical value, the quality of the produced state and
the speed for generating it can be greatly improved.
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FIG. 4. (a) Metrological spin squeezing parameter &% and spin

squeezing parameter &3, and (b) metrological gain (Afsq /AB)?
versus time under different values for the mechanical amplifica-
tion parameter r, with the initial state of the NV spins |g- - - g) and
the coefficients 64, = 0, Ag ~0.14, yny = 0.0014, and N = 6.

Experimental feasibility.—To examine the feasibility of
this proposal for experiments, we consider a silicon
cantilever with dimensions (/ = 6,w = 0.1,7 = 0.05) um.
The fundamental frequency and the zero-field fluctuation
can be expressed as w,, ~3.516 x (t/I*)\/E/12¢0 ~ 2z X
11 MHz (with its quality factor Q about 10°-10°) and
2t = \/1/2Mw,, ~2.14 x 107" m, with Young’s modu-
lus E~13x10"" Pa, the mass density o~ 2.33x
10° kg/m?, and effective mass M ~ glwt/4. Assuming an
environmental temperature 10 mK in a dilution refrigerator,
the thermal phonon number is about n,, ~ 100. Thus the
effective mechanical dissipation rate is I, = n,w,,/
O ~ 2z x 1 kHz. It is worth noting that the strain coupling
scheme is particularly suitable for the case of multiple NV
centers simultaneously coupled to the same cantilever. For
the case of magnetic coupling, we assume that the magnetic
tip has a transverse width of 50 nm, longitudinal height of
100 nm, and a radius of curvature of the tip ~20 nm. An
array of NV centers are placed homogeneously and sparsely
in the vicinity of the upper surface of the diamond sample,
just under the magnet tips one by one with the same distance
h ~ 25 nm. Note that individual, optically resolvable NV
centers can be implanted determinately at a single spot
5-10 nm below the surface of the diamond sample by
targeted ion implantation [17,18], in direct analogy to the
excellent control over the locations and distances between
the ions in trapped ions.

In order to ensure that the magnetic dipole interactions
between adjacent centers can be ignored, we assume that
the distance between the adjacent NV centers (or the
adjacent magnetic tips) is about 50 nm. Furthermore, the
distance between the adjacent magnetic tips and NV centers
is also about 50 nm. Therefore, for each NV spin, the
influence caused by the adjacent magnetic tips can be
ignored. The first-order gradient magnetic field caused by
the sharp magnetic tip is about G ~ 1.7 x 107 T/m. We can
obtain the magnetic coupling strength between the canti-
lever and the NV spin as 1/27 ~ 100 kHz. We expect the
variations in the size and spacing of the nanomagnets
and NV centers give rise to a degree of disorder in the
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system [62]. The disorder makes the coupling A cannot be
the same for all of the NV centers. However, as analyzed
[62,65], when the disorder factor is less than 5%, its
effective influence on the system can be neglected.

We assume that the pump frequency and the amplitude
are respectively w,/2x ~ 10 MHz and Q,/27x ~ 1 MHz
[84-90]. In this protocol, the squeezing parameter satisfies
r € [0, 5], and then we can obtain the effective spin-phonon
coupling A, ~ 1004 and the effective spin-spin coupling
A ~ 100Ay ~ 104. On the other hand, the single NV spin
decoherence in diamond is mainly caused by the coupling
of the surrounding electron or nuclear spins, such as the
electron spins P1 centers, the nuclear spins '“N spins and
13C spins. With the development of the dynamical decou-
pling techniques [91-96], the dephasing time for a single
NV center in diamond is about 7, ~ 1/yxy ~ 1 ms. Based
on the above parameters, we have the magnified cooper-
ativity Cg > 10° with this spin-mechanical hybrid system,
much larger than that (about Cy > 10?) achieved in a cavity
QED or circuit QED system [59,60].

Another issue that should be considered is the noise
suppression for this system. In the presence of the
mechanical amplification, the noise coming from the
mechanical bath is also amplified. As discussed above,
to circumvent such undesired noises, a possible strategy is
to use the dissipative squeezing approach. In order to
generate the desired squeezed-vacuum reservoir, the
mechanical mode should be prepared in the squeezed state
with the squeezing parameter r ~ 1.5 through the dissipa-
tive squeezing method. Note that recent experiments have
already demonstrated the generation of squeezed phonon
states with the squeezing parameter r ~ 1.45 by dissipative
squeezing [97], which corresponds to a 12 dB reduction
below the standard quantum limit.

Conclusion.—In this work, we propose an experimen-
tally feasible and simple scheme for exponentially enhanc-
ing the spin-phonon and the spin-spin interactions in a
spin-mechanical system with only linear resources. We show
that, by modulating the spring constant of the mechanical
cantilever with a time-dependent pump, the mechanical zero-
point fluctuations can be amplified, giving rise to a large
enhancement of the spin-phonon and the phonon-mediated
spin-spin interactions. The proposed method is general, and
can apply to other defect centers or solid-state systems such
as silicon-vacancy center, germanium-vacancy center, and
tin-vacancy center in diamond [98-102] coupled to a
quantum nanomechanical element.
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