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Limited quantum memory is one of the most important constraints for near-term quantum devices.
Understanding whether a small quantum computer can simulate a larger quantum system, or execute an
algorithm requiring more qubits than available, is both of theoretical and practical importance. In this
Letter, we introduce cluster parameters K and d of a quantum circuit. The tensor network of such a circuit
can be decomposed into clusters of size at most d with at most K qubits of inter-cluster quantum
communication. We propose a cluster simulation scheme that can simulate any ðK; dÞ-clustered quantum
circuit on a d-qubit machine in time roughly 2OðKÞ, with further speedups possible when taking more fine-
grained circuit structure into account. We show how our scheme can be used to simulate clustered quantum
systems—such as large molecules—that can be partitioned into multiple significantly smaller clusters with
weak interactions among them. By using a suitable clustered ansatz, we also experimentally demonstrate
that a quantum variational eigensolver can still achieve the desired performance for estimating the energy of
the BeH2 molecule while running on a physical quantum device with half the number of required qubits.
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Introduction.—Near-term quantum computing applica-
tions will focus on noisy intermediate-scale quantum
(NISQ) devices [1], where quantum memory is limited
both in quantity and quality. To meet the memory need of
such applications (e.g., quantum simulation [2–4], quantum
optimization [5,6], and quantum machine learning [7,8]), it
is desirable to seek a way to perform computations that
require more qubits than physically available, at the cost of
additional affordable classical processing.
Trading classical computation for quantum computation

is a well-motivated topic of long-standing interest. An
extreme example of this is the (fully) classical simulation
with no quantum computation at all, which is however
limited to small dimensions, weak entanglement, or circuits
with special gate sets [9–13]. Recently, the possibility of
trading classical computation for “virtual qubits” has been
discussed in [14]. A systematic understanding of such
trade-offs will be crucial for realizing near-term quantum
applications.
In this Letter, we introduce a cluster simulation scheme,

a general framework for simulating large quantum circuits
on a quantum computer with a small amount of quantum
memory. The performance of our simulation depends on
the cluster parameters of the given circuits. In particular, we
are inspired by the classical fragmentation methods and
quantum mechanics and molecular mechanics methods for
simulating molecules [15–18] that can be partitioned into
multiple weakly interacting clusters of significantly smaller

size (e.g., an oligosaccharide consisting of several mono-
saccharides). Following the spirit of [14] and [15–18], a
natural definition of cluster parameters of a quantum circuit
should capture the decomposability of the circuit into
clusters of bounded size and limited intercluster
interactions.
Our definition of the cluster parameters is guided by the

above intuition, but with an important distinction. Instead
of looking into the decomposability of any given circuit, we
are concerned about the decomposability of the corre-
sponding tensor network, which is inspired by the tensor-
network-based classical simulation of quantum circuits
[9,19–21]. One significant advantage of our definition,
as we will see below, is to use more flexible decompositions
of tensor networks than are possible with simple partition-
ing of qubits (e.g., as in [14]).
Given our definition of clustered circuits, our main

contribution is a scheme to simulate the entire quantum
circuit by simulating each cluster on a small quantum
machine with classical postprocessing. The key difference
between our scheme and fully classical simulation schemes
[9–13,22–26] is that we keep part of the computation
quantum (i.e., unitary). In particular, we design a method to
simulate intercluster quantum interactions by classical
means. Comparing to “virtual qubits” in [14], our technique
can be deemed as trading classical computation for “virtual
quantum communication.” The cluster simulation scheme
applies to general quantum circuits, which distinguishes it
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from application-specific techniques for saving qubits
[27–30].
We apply our scheme to Hamiltonian simulation [31–34],

particularly for clustered quantum systems, and variational
quantum eigensolvers (VQE), a popular candidate for
showing quantum advantages on near-term quantum devices
[35–37]. In both applications, we show that the particular
quantum circuits have favorable cluster parameters that are
amenable to our techniques. One can also interpret our
technique as a hybrid variational ansatz in which a quantum
computer is used for some parts of the circuit and a classical
computer is used for other parts, which might be of
independent interest.
Our scheme can easily be extended to allow limited

intercluster quantum communication. It can hence be
leveraged to perform general quantum circuits on modular
quantum systems, a leading proposal of scalable quantum
computers (e.g., [38–41]).
Computational model.—We use the same computational

model as in [14]; see Fig. 1 (Phase 1). An m-gate quantum
circuit C with one- and two-qubit gates is applied to j0i⊗n

and all output qubits are measured in the computational
basis. A classical postprocessing function f∶ f0; 1gn →
½−1; 1� is then applied to the measurement outcomes. We
assume that f can be efficiently computed classically. We
call the overall procedure a quantum-classical algorithm
(QC algorithm) and denote it by ðC; fÞ. Its expected output
EyfðyÞ is averaged over all measurement outcomes
y ∈ f0; 1gn. The goal of our simulation is to approximate
EyfðyÞ within precision ϵ with high probability, say at
least 2=3.
Clustered circuits.—Any QC algorithm ðC; fÞ can be

represented by a tensor network ðG;AÞ consisting of a
directed graph GðE; VÞ and a collection of tensors
A ¼ fAðvÞ∶v ∈ Vg. The vertices V of G represent indi-
vidual gates (denoted by □), input qubits (denoted by ⊲),
and observables (denoted by ⊳) as shown in Fig. 1 (Phase
2), whereas the flow of qubits is encoded by the directed
edges E of G. Note that each gate vertex□ has the same in

and out degree (i.e., the same number of incoming and
outgoing edges) whereas ⊲ vertices only have outgoing
edges and ⊳ vertices only have incoming edges. For each
v ∈ V, AðvÞ is a tensor that encodes the matrix entries of
the corresponding gate, state, or observable, and the value
TðG;AÞ of the tensor network ðG;AÞ coincides with the
output expectation of the corresponding ðC; fÞ algorithm,
i.e.,

TðG;AÞ ¼ EyfðyÞ: ð1Þ

See the Supplemental Material [42] for more details.
A QC algorithm ðC; fÞ is ðK; dÞ clustered if its tensor

network ðG;AÞ has the following structure. Setting the
final observable Of aside, we partition the remaining
vertices of G into clusters S1;…; Sr and let g be the
(rþ 1)-vertex multigraph obtained by contracting each
cluster to a single vertex. Let K be the number of edges
in g minus the in-degree of Of (intuitively, K is the total
number of qubits communicated between clusters) and let d
be the number of qubits sufficient for simulating each
cluster.
While finding the minimal d can be nontrivial (especially

if qubits can be recycled after measurement), a good
estimate of d is maxi dðSiÞ where dðSiÞ is the out degree
of cluster Si. This is a valid upper bound on the minimal d
since dðSiÞ is the number of ⊲ vertices in Si plus the
number of incoming edges to Si, which upper bounds the
total number of qubits required to simulate Si.
For example, in Fig. 1 (Phase 2), two parts of a partition

fS1; S2g are indicated by blue and orange, respectively.
Since only one qubit is sent from S1 to S2, K ¼ 1. We have
dðS1Þ ¼ 3 due to two outgoing edges from S1 to Of and
one from S1 to S2. Similarly, dðS2Þ ¼ 2 and thus we can
take d ¼ 3. This circuit is hence (1,3) clustered.
Our framework generally allows for more flexibility in

decomposing quantum circuits compared to [14]. Consider
the 2n-qubit example in Fig. 2. Assuming each block Bi
with depth D is dense, i.e., contains two-qubit gates

FIG. 1. Four phases of our simulation: (1) the original quantum circuit, (2) the corresponding tensor network, (3) a collection of tensor
networks obtained by cutting an edge, and (4) a collection of smaller quantum circuits.
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between all pairs of qubits, any partition of the initial 2n
qubits induces at least ΩðnÞ gates across the parties and
thus requires ΩðnÞ qubits of communication to implement
the circuit. However, this is a ð2; nþ 1Þ-clustered circuit
with only two qubits of communication between the blue
and orange clusters in Fig. 2. Furthermore, the depth is
reduced from 3D to 2D when simulating each cluster
separately.
Cluster simulation scheme.—To fulfill the above intu-

ition, for any ðK; dÞ-clustered circuit, we need to show how
(i) each cluster can be simulated on a d-qubit quantum
machine and (ii) how to simulate the interaction among
clusters. We design an edge-cutting procedure to decom-
pose tensor networks as shown in Fig. 1 (Phase 3). In
particular, we replace each edge, modeled as a perfect
channel for communicating a qubit, by a collection of
tensor networks that reproduce the intercluster communi-
cation by operations within each cluster. This, however,
comes at a cost of having to average over several runs. (In
the spirit of [14], this technique can be thought of as
“virtual quantum communication.”)
Lemma 1.—Let ½GðE; VÞ;A� be a tensor network of a

QC algorithm. For any edge e ∈ E,

TðG;AÞ ¼
X8

i¼1

ciTðG0;AiÞ; ð2Þ

where G0 differs from G by removing e and adding one ⊲
and one ⊳ vertex, each ci ∈ f− 1

2
; 1
2
g, and each ðG0;AiÞ

corresponds to a valid quantum circuit.
(All proofs in this Letter are deferred to the Supplemental

Material [42].) By repeating this process and deleting more
edges, the tensor network can eventually be partitioned into
individual clusters. Each cluster will only have outgoing
edges to Of and can hence be simulated by a d-qubit
quantum computer plus classical processing of the meas-
urement outcomes (Phase 4 in Fig. 1). We combine
individual simulation results by a simple sampling pro-
cedure according to Eq. (2).

Our overall simulation scheme consists of several
iterations of the following steps: (i) producing a classical
description of a quantum circuit with OðmÞ gates and d
qubits (potentially recycled during the circuit), (ii) running
this circuit on j0i⊗d, and (iii) classically postprocessing the
measurement outputs. The final step has to produce with
probability at least 2=3 an ϵ approximation of TðG;AÞ.
The complexity of our scheme scales with the cluster

parameters ðK; dÞ as well as the total number of qubits n and
gates m in the original circuit C, and the desired additive
simulation accuracy ϵ. The total classical and quantum
running time of our simulator is OðQpolyðnþmÞ=ϵ2Þ,
for some exponentially scaling parameterQ. For simplicity,
we ignore the polynomial part of the run-time and call this a
“ðQ; dÞ simulator.” A fully classical simulator is thus a
ð2OðnÞ; 0Þ simulator, while a scalable quantum computer is a
ð1; nÞ simulator with an exponentially improved total run-
time. Our result can be deemed as a smooth trade-off
between these two extreme cases.
Theorem 1—Any QC algorithm ðC; fÞ with a ðK; dÞ-

clustered circuit C has a ð2OðKÞ; dÞ simulator. The total
classical and quantum running time of this simulator is
Oð24KðnþmÞ=ϵ2Þ, where n and m are the total number of
qubits and gates in C, and ϵ is the desired accuracy.
In the special case when there are only two clusters, the

number of qubits K communicated among the clusters can
be regarded as an upper bound on entanglement. Hence, the
result relates the classical computation cost to the entan-
glement between the two clusters.
The efficiency of our simulation can be further improved

for special classes of postprocessing functions
f∶ f0; 1gn → ½−1; 1�. For example, consider decomposable
f satisfying fðyÞ ¼ Q

r
j¼1 fjðyjÞ, where y ¼ y1;…; yr is a

partition of the original n-bit string y into substrings yj that
correspond to outputs of different clusters [47], and
fjðyjÞ ∈ ½−1; 1�. Typical examples of such decomposable
functions arise from Pauli observables in VQE [48] or
estimating probabilities of specific output strings [49]. For
such functions, we can replace Of by smaller tensors Ofj

and include them in the corresponding clusters Sj. As a
result, the induced graph g no longer contains Of.
Nevertheless, we can still apply Lemma 1 to decompose
each cluster and simulate it on a d-qubit quantum machine.
However, inspired by [9], a more efficient scheme for
combining individual simulations is now possible. Its
complexity depends on ccðgÞ—the contraction complexity
of g—that is the minimum (over all possible contraction
orders) of the maximum node degree during the procedure
of contracting the graph to a single vertex.
Theorem 2.—Any QC algorithm ðC; fÞ with a ðK; dÞ-

clustered circuit C, a decomposable function f, and
induced graph g has a ð2OðccðgÞÞ; dÞ simulator.
Note that ccðgÞ ≤ K, where K is the number of edges in

g. Compared to 2OðKÞ in Theorem 1, the factor 2OðccðgÞÞ in

FIG. 2. A ð2; nþ 1Þ-clustered circuit with three dense blocks.
While any partition of its qubits induces ΩðnÞ gates between
different parts, merging blocks B1 and B3 into a single cluster
results in only two qubits communicated between the two
clusters. In this example, the size and the depth of the circuit
after clustering are both reduced compared to the original circuit.
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Theorem 2 is a significant improvement for some families
of graphs. For example, among constant-degree graphs
with n nodes, ccðgÞ ¼ Oð1Þ for trees and ccðgÞ ¼ Oð ffiffiffi

n
p Þ

for planar graphs [50], while K can be as large as OðnÞ.
Application to Hamiltonian simulation.—One of the

most promising potential applications of our result is the
simulation of clustered quantum systems. Specifically, we
consider quantum systems with geometric layouts where
each qubit only interacts with Oð1Þ adjacent qubits. The
corresponding interaction graph G (i.e., qubits as vertices
and interactions as edges) has constant degree. Assume
further that qubits inG can be grouped into n parties and let
g be the induced graph obtained by contracting each party
of G to a single vertex. The Hamiltonian of such a system
can be written as a sum of local terms

H ¼
X

j

Hð1Þ
j þ

X

j

Hð2Þ
j ; ∀ i; j∶kHðiÞ

j k ≤ 1; ð3Þ

where each term acts on at most two qubits and the
superscripts (1) and (2) indicate that these qubits belong
to a single party or two different parties, respectively. The
interaction strength between all parties can be character-

ized by h ¼ P
j kHð2Þ

j k. We are interested in quantum
systems with weak interaction strength (e.g., Fig. 3).
Assume that the system is initialized in a product state
ρ ¼ ρ1 ⊗ � � � ⊗ ρn, where ρi is an efficiently preparable
state of the ith party. Our goal is to approximate the
following correlation function: Tr½ðO1 ⊗ � � �
⊗ OnÞe−iHtðρ1 ⊗ � � � ⊗ ρnÞeiHt�, where t is the evolution
time and Oi is an efficiently measurable observable of the
ith part with eigenvalues in ½−1; 1�.
Theorem 3—The correlation function of the Hamiltonian

H in Eq. (3) can be approximated to accuracy ϵ by a
ð2OððhtÞ2ccðgÞ=ϵÞ; dÞ simulator, where ccðgÞ is the contraction
complexity of its induced graph g, h is the interaction
strength, t the evolution time, and d the number of qubits in
the largest party.
At a high level, the above result is obtained by applying

Theorem 2 to Hamiltonian simulation circuits of e−iHt

based on the Trotter-Suzuki approximation, but with the

following important improvements. To obtain a better
estimate of the cluster parameters ðK; dÞ, we need to apply
Lemma 1 to trim the tensor network beyond simulating
intercluster communication, and to conduct a careful
analysis of d to allow recycling of qubits. Inspired by
[51], we also need to improve the naive error analysis and
to obtain an error bound in terms of the interaction
strength h.
The exponential dependence on t [52] seems necessary

as suggested by hardness results of classical simulation of
quantum circuits (e.g., [54]). It was also previously known
that a classical algorithm can estimate local observables in
time exponential in the size of the light cone [55,56], i.e.,
the number of input qubits that could influence a particular
output qubit, resulting in a similar run-time bound. (For
Hamiltonian evolution we still have an effective light cone
due to Lieb-Robinson bounds, e.g., [51].) Our approach is,
however, strictly stronger in the sense that we could
estimate correlations across the entire system, something
that cannot be achieved by the light cone argument.
Application to VQE.—VQE is a variational method for

finding the lowest eigenvalue of an n-qubit Hamiltonian H
by applying some parameterized circuit UðθÞ to j0i⊗n and
minimizing the expectation with H: minθh0j⊗n×
UðθÞ†HUðθÞj0i⊗n. This method has been proposed for
solving optimization problems on quantum computers
[5,35,37] and, thanks to its short-depth circuits, has become
a promising candidate to surpass the classical optimization
methods and show quantum advantage on NISQ devices
[1,4,6,48,57].
In [48], Kandala et al. propose a class of hardware-

friendly variational circuits UðθÞ and experimentally dem-
onstrate the effectiveness of their VQE method for address-
ing problems of small molecules and quantum magnetism,
using up to six qubits. Their ansatz UðθÞ has the following
form:

UðθÞ ¼ UDðθDÞUENT � � �U1ðθ1ÞUENTU0ðθ0Þ; ð4Þ

where UiðθiÞ ¼ ⊗
n

j¼1
Uj

iðθjiÞ and each Uj
iðθjiÞ is a para-

metrized single-qubit gate applied on the jth qubit out
of n, UENT is a fixed sequence of two-qubit gates meant for
producing entanglement, and D is the number of rounds.
In the context of current NISQ devices, we propose a

way to reduce the number of qubits required for imple-
menting UðθÞ by using our cluster simulation scheme. This
involves the following steps: (i) choosing a partition P ¼
fS1;…; Srg of n qubits such that jSij ≤ d for each i;
(ii) removing some entangling gates from UENT that go
across different parts of P to decrease ccðgÞ, where g is the
graph induced by regarding each set Si as a node and each
gate that acts across two sets as an edge; (iii) runing this n-
qubit UðθÞ using a ð2OðccðgÞÞ; dÞ simulator.

FIG. 3. Interaction graph G of a local Hamiltonian with four
parties, each a square grid of size

ffiffiffi
n

p
×

ffiffiffi
n

p
. Each pair of adjacent

parties has a weak interaction, indicated by the red lines. Since the
contraction complexity ccðgÞ of the induced graph g and the
interaction strength h are both Oð1Þ, for short periods of time
[e.g., t ¼ Oð1Þ], this 4n-qubit system can be efficiently simulated
on an n-qubit quantum computer.
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We report an experiment estimating the ground energy of
the BeH2 molecule; see Fig. 4. Using a three-qubit physical
device, we run the six-qubitUðθÞ from [48] and achieve the
similar accuracy, thus demonstrating the potential of
implementing VQE with limited quantum memory.
Additional details about the experiment and the discussion
of reducing ccðgÞ can be found in the Supplemental
Material [42].
Summary.—In this Letter, we provide a systematic

approach for simulating clustered quantum circuits with
limited use of quantum memory. Our scheme is relevant to
promising NISQ applications such as Hamiltonian simu-
lation and VQE. By reducing the number of qubits and the
depth of the circuit, it is particularly applicable to inter-
mediate scale devices and potentially also improves the
circuit’s robustness to correlated noise. We leave open the
problem of determining the best ðK; dÞ or ½ccðgÞ; d� for a
given quantum circuit (this may be related to the graph
partitioning, graph clustering, and treewidth problems).
Another direction is to develop more case-by-case opti-
mization techniques for realistic applications under our
scheme.
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