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How does a cell locate the source of molecular guidance cues from within a concentration gradient? We
present a computational approach to recover the source from the absorbed fluxes at narrow receptor
windows located on the surface of the cell. In the limit of fast binding, we solve the steady-state diffusion
equation using an asymptotic approach and hybrid stochastic-analytical simulations. We show that the
sensitivity to the gradient direction decays too rapidly to enable long-distance sensing. We illustrate how
this constraint can be alleviated when triangulating the source with an increasing number of receptor
windows and quantify the susceptibility of this process to flux perturbations.
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How do biological cells find a small target site with
remarkable precision? This question is ubiquitous in cell
biology: spermatozoa need to find the egg in the uterus
[1–4]; during brain development, axonsmigrate toward their
final destination by interpreting morphogen gradients via an
as of yet unclearmechanisms [Fig. 1(a)] [5–7]. Cells can also
decide their migration strategy by combining information
from chemical and mechanical gradients that provide
guidance to small targets in complex environments [8,9].
The physical principles by which cells find a small target

remains poorly understood despite decades of theoretical
and experimental works. The first step is the cell ability to
detect a local gradient concentration. This question was the
subject of Berg and Purcell model, and subsequent signifi-
cant improvements [10–13]. In their approach, the differ-
ence in concentration of diffusing molecules is computed
across a small test ball. However, this paradigm is not
sufficient to decipher how a cell is able to triangulate the
exact position of a gradient source, which goes beyond
detecting a gradient concentration [14–16]. Here, the physi-
cal model consists instead of many receptors distributed
across the surface of a cell that bind diffusing molecules at a
fast rate, which differs from [17]. The flux imbalances
between different receptors then form a directional signal
from which a cell could triangulate the position of the
source, thereby identifying its exact location. In a different
context, localizing the origin of a disease outbreak (source in
a network) requires many spread agents [18].
Triangulating a source in two dimensions requires at

least three small receptors to reconstruct the location of the
source [15]. However this reconstruction is possible only if
the source is exceedingly close—only up to 20 to 40 times
the cell diameter. In that case, the level of detection
sensitivity decreases with the reciprocal of the distance

to the source. Yet, the axonal growth cone, despite being
only a fewmicrons across, nevertheless is able to accurately
find its final destination over rather long distances (mm to
cm). This paradox was resolved by understanding that
migration is constrained to narrow tubes, where triangula-
tion works at much longer ranges due to the asymmetric
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FIG. 1. (a) Neuronal growth cone in an external chemical
gradient. Receptors located on the cell surface are able to sense
the gradient, thereby defining the first step of navigation in the
Brain. (b) Model of sensing: ball containing small windows
(receptors). The source is located at x0, where Brownian particles
are released (blue and purple).
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location of the source effectively reducing the search to
one dimension [15].
In the present Letter, we study gradient sensing and

triangulation in three dimensions using a diffusion model
for the molecular cues. We provide an analytical expression
for the receptor fluxes using the method of matched
asymptotics for the Laplace operator. Using this solution,
we determine how the location of the source depends on the
position of the receptors. We determine the position of
the source for various receptor configurations and show that
the sensitivity and susceptibility to noise decay with 1=

ffiffiffiffi
m

p
,

where m is the number of receptors.
Diffusion model of cell triangulation.—The model

[Fig. 1(b)] consists of diffusing cues that have to bind to
M narrow windows located on the surface of three dimen-
sional ball Ba of radius a. Note that in the case of growth
cones, a is on the order of 2–3 μm, and M can range
between 10 and 50 for, e.g., GABA receptors, but can be
much higher for other receptor types. Individual cue
molecules are described as Brownian particles. The cues
are released from a source at position x0 outside the ball
[Fig. 2(a)]. Our goal is to estimate the steady-state flux at
each narrow window for fast binding (i.e., the probability
density has an absorbing boundary condition at the win-
dows). The first step is to solve the Laplace equation

DΔP0ðxÞ ¼ −Qδx0 for x ∈ R3 − Ba; ð1Þ

whereD is the diffusion coefficient in ðcell radiiÞ2=s andQ
the number of released particles per unit of time [1/s]. It is
always possible to remove these factors by rescaling
P0 → DP0=Q. Thus for simplicity we will take D=Q as
unity. The boundary conditions are ð∂P0=∂nÞðxÞ ¼ 0 for
x ∈ ∂Ba − SkðεÞ, where SkðϵÞ are nonoverlapping circular
windows representing receptors (or possibly clusters thereof)
of radius ε centered at points xk on the surface of the sphere;
the remaining surface of the sphere is absorbing with
P0ðxÞ ¼ 0 for x ∈ Σa ¼ S1ðεÞ ∪;…;∪ SmðεÞ. As x tends
to infinity, the gradient needs to dissipate, hence we use the
additional condition limjxj→∞P0ðxÞ ¼ 0. Using the Green’s
function approach, a solution of (1) can be found using the
Neumann’s function [19] for the exterior to a ball in three
dimensions

N ðx; x0Þ ¼
1

4πjx − x0j
þ a

4πjx0jjx − a2x0
jx0j2 j

þ 1

4πa
log

�jx0jjxj
a2 ½1 − cosðθÞ�

d̃ðx; x0Þ

�
; ð2Þ

where d̃ðx; x0Þ ¼ 1 − ½ðx0:xÞ=a2� þ f1þ ½ðjx0jjxjÞ=a2�2 −
2½ðx0:xÞ=a2�g1

2 and θ ¼ ∢x0x. N is the solution of the
Laplace’s equation

ΔN ðx; x0Þ ¼ −δðx − x0Þ for x ∈ R3; ð3Þ

with boundary condition ð∂N =∂nÞðx; x0Þ ¼ 0 for
x ∈ Sa ¼ ∂Ba, where Sa is the surface of the three-
dimensional ball Ba and x0 ∈ R3 − Ba the location of the
source. Finally,

P0ðxÞ ¼ N ðx; x0Þ þ
X
k

Z
y∈SkðεÞ

N ðx; yÞ ∂wðyÞ∂n dSy: ð4Þ

Defining the vector α̃ with the entries αi ¼ −N ðxi; x0Þ,
using the unknown fluxes on each window ð∂P0=∂nÞðyÞ ¼
½Ak=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − r2

p
Þ�, for y ∈ SkðεÞ, and Eq. (4), we find that the

fluxes follow the matrix equation:
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FIG. 2. Diffusion fluxes to two windows. (a) Reflecting ball
with window one (orange) facing the source (small orange
sphere) and a second window at an angle ϕ. Brownian particles
are released by the source (hybrid simulation) either absorbed by
one of the windows (magenta) or can escape to infinity. (b) Total
flux through both windows vs the angle ϕ, (c) absolute flux
through window two, and (d) splitting probability for a particle to
hit window two. Curves are for various distance L to the source:
analytical results Eq. (6) (solid lines) are compared to simulation
data (crosses).
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½M̃�Ã ¼ α̃; ð5Þ

where ½M̃�¼θεIþ2ε=πN and θε¼π=2þεlogðε=aÞ=ð2aÞþ
Bε. The constantB (third order in the asymptotic expansion)
will be determined numerically. The symmetricmatrixN has
zeros on its diagonal and the remaining entries are ½N�ij ¼
N ðxi; xjÞ where i; j ¼ 1;…;M, i ≠ j. The structure of the
matrix M̃ disallows an explicit solution for any number of
windowsM, but can be inverted for a fixedM. Finally, after
numerically solving Eq. (5), the flux on each window is
Φk ¼ 2πAk. To first order, the solution is

Φk¼θ−1ε

�
αk−

2πε

θε

X
q≠k

N ðxq;xkÞαk
�
þO

��
2πε

θε

�
2
�
: ð6Þ

We first confirm the validity of this result using a steady-state
hybrid stochastic simulation scheme to compute these fluxes:
briefly, after Brownian particles are released from the source
Sðx0Þ, their position is immediately mapped to a test surface
which consists of a sphere ∂BR around the ball Ba, with
R ≫ aþ ε [Fig. 2(a)]. The distribution of mapped points is
given by the mapping

Pðx; x0Þ ¼
1

4π

β2 − 1

ð1þ β2 − 2β cos γÞ3=2 ; ð7Þ

which represents the flux through the absorbing boundary
∂BR in free space, here jxj ¼ R, jxjjx0j cos γ ¼ x · x0 and
β ¼ jx0j=R. After mapping to the initial position, a particle
performs a Brownian motion (Euler-Maruyama scheme)
until it is absorbed by a window. A particle can also leave
the test ball of radius Re > R (this larger radius exists to
prevent frequentmappings), uponwhich it ismapped back to
the surface ∂BR using Eq. (7). For each mapping, a particle
has a finite probability Pe ¼ R=jx0j to escape to infinity,
whereupon its trajectory is terminated.
Accuracy in recovering the direction of a source only.—

To illustrate the insight of the model, we start with two
windows located on the equator of the ball [Fig. 2(a)]:
window one faces the source directly and window two is at
an angle ϕ. The total flux through both windows vs the
source distance L ¼ jx0j and the angle ϕ shows excellent
agreement [Fig. 2(b)] between the analytical results (solid
lines) and simulated data (crosses), with the single fit
parameter B ¼ 5.7. The flux through window two alone
[Fig. 2(c)] shows a single maximum when the windows are
close and decays rapidly to a small but finite value when the
window is on the opposite side of the ball. The splitting
probability pS ¼ ½Φ1=ðΦ1 þΦ2Þ� of hitting window two
given that a particle hits one of the windows allows for
distinguishing the direction only of the source when it is
very close. Already for L ¼ 10 ball radii, the difference
in the hitting probabilities is smaller than 10%, which

illustrates the difficulty of direction sensing over long
distances.
To quantify the distance at which it is still possible to

recover the direction of the source with three windows, we
use the sensitivity cost function

S123ðx0Þ ¼ maxfjP1ðx0Þ − P2ðx0Þj; jP2ðx0Þ − P3ðx0Þj;
jP3ðx0Þ − P1ðx0Þjg; ð8Þ

where x0 is the position of the source and xi, i ¼ 1, 2, 3 are
the positions of the three windows on ∂Ba. The cost
function fðx0; x1; x2; x3Þ describes the maximum absolute
imbalance between the fluxes through the windows.
Figure 3(a) shows the contours of this function for three
windows arranged in an equatorial equilateral triangle in a
slice through the z ¼ 0 and x ¼ 0 planes at three different
threshold levels. Notably, the distance at which directions
can still be discerned is approximately an order of magni-
tude less for any given threshold compared to the equiv-
alent situation in two dimensions [15]. Indeed, using the
dipole expansion for a source located far away jx0j ≫ 1,
fðx0; x1; x2; x3Þ ≈ ½C=ðjx0j2Þ� where C > 0 is constant.
Figure 3(b) illustrates this decay.
Triangulating the source location.—To reconstruct the

location of a source x0 (three coordinates of the source)
from the measured fluxesΦi received at windows located at
position xi, we require at least three windows. Interestingly,
in two dimensions the minimum number of windows is
three as well, even though only two coordinates need to be
determined. The source location x0 enters Eq. (5) only
via the Neumann-Green’s function N , which we invert

(a)

(b)

FIG. 3. Sensitivity of detecting the source position from Eq. (8).
(a) A ball with three windows arranged as an equilateral triangle.
The detection contours is in the plane that contains all three
windows (left) and in plane perpendicular to the window plane
(right), for three different detection thresholds (1%, 0.1%, and
0.01%). (b) The sensitivity decays with 1=jx0j2 for the source
position x0. Distances are measured in units of the cell radius.
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numerical by rewriting Eq. (5) as a solution of the implicit
equations

Fiðx0Þ ¼ θεΦi þ
X
j≠i

N ðxi; xjÞΦj − 2πN ðxi; x0Þ ¼ 0:

Each of the m equations describes a closed surface in three
dimensions, the intersection of which yields the source
location. Therefore, we use the following procedure: we
search for the joint root of the Fiðx0Þ by tracing the root
contour of F1 in the x-y plane until we find its intersection
with the root contour of F2. We then plot the curve
described by the joint root contour of F1 and F2 until
F3 ¼ 0 is fulfilled [Fig. 4(a)]. This yields the source
location x0 as a function of the measured fluxes Fi and
the window locations xi. The choice of window labels used
in this algorithm is arbitrary and we could have used any
combination of three of the m windows.
Susceptibility of the reconstruction to flux noise.—In

order to estimate the susceptibility of the triangulation
to small perturbations, we define the noisy flux coordinates
Φ̃i ¼ Ki=Nt, where i ¼ 1;…; m and Ki ∼MultiðNt;
fΦ1;…;Φm; 1 −

P
m
i¼1ΦigÞ are multinomially distributed

withNt ¼ 107 trials (the smallerNt the noisier the resulting
fluxes). For each combination of three windows j, k, l out
of n ¼ mðm − 1Þðm − 2Þ=6, we calculate the recovered
position x̃r, r ¼ ðj; k; lÞ, using the procedure described
above. These positions will all be shifted relative to each
other due to the stochatic perturbation, hence the final
estimator of the source position is x̂m ¼ P

n
r¼1 xr=n where

n ¼ mðm − 1Þðm − 2Þ=6 the number of combinations. To
measure the susceptibility to random fluxes, we plot the
radius R99ðm;LÞ around x0 in which 99% of recovered

points fall out of 1000 independent realizations of the Φ̃i
(Fig. 5). We examine three window configurations (with the
exact source randomly located on a shell with radius L):
spread uniformly across the ball surface [Fig. 5(a)], con-
centrated in a single cluster [Fig. 5(b)], and window clusters
spread uniformly across the surface [Fig. 5(c)]; see the
Supplemental Material [20] on the window position algo-
rithm. Stochastic simulations show a reduction in R99 with
an increasing number of windows in all cases [Fig. 5(a)].
For m ≥ 9, R99 scales roughly as m−1=2 (Fig. S2). Case A
shows a better accuracy for small L and lowm than cases B
and C [Figs. 5(a)–5(c)]. The dip in R99 for small m in cases
B and C [Figs. 5(b), 5(c) and S1(b),S1(c)] is driven by a
thinning of the angular spread of the recovered points at
certain orientations [Figs. S3(b),S3(c) and S4]. At large m,
all three cases converge to similar accuracy. We can also

(a)

(b)

(c)

Windows 1-2-3  Windows 1-3-4
Windows 1-2-4  Windows 2-3-4

FIG. 4. Triangulation of the source positionwith three out of four
windows. (a) Triangulation using three fluxes F1, F2, F3. (b) Four
windows yield redundant intersection lines. (c) Enlargement of the
area around the source in (b). Each combination of three windows
defines a volume around the source position (here for a fixed
pertubation η ¼ 0.001 of the fluxes), computed from combining
three out of four windows (colors).

(a)

(b)

(c)

FIG. 5. Uncertainty of the source location. Deviation of the
reconstructed source from its exact position measured by the
radius R99 around x0 in which 99% of recovered points fall, when
the fluxes are subject to multinomial noise with Nt ¼ 107 trials.
The source location is computed by averaging over reconstruc-
tions from all combinations of three windows. R99 is calculated
from 1000 realizations and random source positions (with jx0j¼L
fixed). (a) Windows are spread uniformly across the ball surface,
(b) a single cluster of windows, and (c) window clusters are
spread uniformly across the ball surface (at most three windows
per cluster). The error bars indicate the 95% confidence interval.
The insets show the spread of points around the exact source
position for L ¼ 5 and m ¼ 5 (scale bar corresponds to one-tenth
of the ball radius).
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compute the positional uncertainty by using a Taylor
expansion x̃rðΦ̃j; Φ̃k; Φ̃lÞ ¼ x0 þ JrηþOðσ2Þ, where Jr
is the Jacobian of x0 with respect to the fluxes and
η ¼ ðηj; ηk; ηlÞ. The deviation can then be estimated byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjx0 − x̂mj2i

p
∼ ðσ= ffiffiffiffi

m
p Þ [20].

Concluding remarks.—Because the arrival of Brownian
particles to small windows is Poissonian, the particle fluxes
to receptors on the cell surface can be measured in finite
time empirically by a counting process. Detection of the
direction of an external gradient in three dimensions with
only three windows is only possible at exceedingly short
distances compared to the two-dimensional case (especially
when the cell is placed in a corridor) [15]. Here we showed
that triangulation of the source position and the precision
that increase with the number of receptors, can counter this
decay in directional sensitivity. This can allow in principle
the recovery of a gradient source positions at large
distances. The framework we developed is especially suited
to slow-growing cell projections, such as neuronal growth
cones [5] that have to identify their spatial location in a
gradient field and to ultimately migrate to a final destina-
tion. Future work needs to address how cells integrate the
external cue signals and also deal with multiple gradient
sources to make navigation decisions [21,22].
A similar question generalizing Ref. [15] in three

dimensions was addressed in Lawley et al. [23] during
the review process of this manuscript.
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