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We use active nematohydrodynamics to study the flow of an active fluid in a 3D microchannel, finding a
transition between active turbulence and regimes where there is a net flow along the channel. We show that
the net flow is only possible if the active nematic is flow aligning and that, in agreement with experiments,
the appearance of the net flow depends on the aspect ratio of the channel cross section. We explain our
results in terms of when the hydrodynamic screening due to the channel walls allows the emergence of
vortex rolls across the channel.
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Spontaneous flow generation associated with collective
dynamics in cell colonies [1,2], bacterial suspensions [3,4],
and cytoskeletal elements, both in vivo [5] and in vitro
[6,7], has been of great scientific interest in recent years
[8–11]. The continuous throughput of energy in these
active systems manifests as active turbulence, a flow field
characterized by spatiotemporally evolving fluid jets and
vortices. Under the right conditions, such systems are
capable of self-organization from chaotic flows into coher-
ent flows: groups of active particles move together as a unit
in a directed manner [2,12–14]. Coherent active flows are
relevant to the formation of bacterial biofilms [15], wound
healing [16], organ formation [17], and collective tumor
invasion [18]. Beyond the biological implications, under-
standing how these self-sustained flows can be controlled
and directed would prove to be a tremendous advance in
microfluidics [19] where, conventionally, external flows are
imposed for targeted drug delivery [20], for mixing in
microreactors [21], or for pumping fluids at microscales
[22]. An outstanding question is therefore how the chaotic
motion of active matter can be translated into a self-
sustained coherent flow.
Several lines of evidence demonstrate that geometric

confinement can stabilize chaotic active motion into
directed flows [2,12–14]. In two dimensions, theoretical
analysis [23] predicts a transition from a quiescent fluid to a
coherent, laminar flow through the channel as the channel
height increases beyond a well-defined threshold for a
given activity. The properties of this transition are repro-
duced quantitatively in experiments on fibroblast cells
confined in 2D channels of varying width [2]. Beyond
this linear instability, 2D experiments [13,24–27] and
simulations [28–30] have shown that oscillating flows
and vortex-lattice states also emerge by increasing the
channel height before transitioning to active turbulence.
Despite this extensive research on 2D systems, the

understanding of 3D active flows is in its infancy
[31–33]. Of particular interest, recent puzzling experiments
show that the chaotic motion of a suspension of micro-
tubules and molecular motors can be stabilized into a
coherent flow in meter-long channels with a square cross
section of any size but not in channels with a rectangular
cross isosection [14]. (In this Letter, we will use the term
“coherent flows” to refer to a state of broken symmetry
along the channel length, whereby a net transport of fluid
through the channel is obtained.) The maximum flow
velocity reached about 10 mms−1, which is comparable
to the velocities of pump-driven flows routinely used in
microfluidics. However, the physical mechanism behind
the transition to a net flow and the reason for its dependence
on the aspect ratio of the channel remain unexplained.
Here, to address these outstanding questions and to

bridge the gap between 2D and 3D studies of confined
active flows, we perform numerical simulations of active
nematohydrodynamics. In a manner similar to the exper-
imental conditions in [14,24], the system is maintained
above the isotropic-nematic transition temperature such
that all the nematic ordering is activity-induced [34]. We
find that an active fluid transitions from active turbulence to
coherent flows as the aspect ratio of the confining channel
is reduced. In addition, the simulations allow us to show
that a necessary physical condition for such a crossover is
that the system must be in the flow aligning regime, where
the induced order aligns with the self-generated shear
flows. We explain the underlying mechanism of the
transition to coherent flows based on these observations.
Governing equations.—We consider a model, active

nematic, incompressible fluid on a continuum scale,
conserving mass and momentum [10,35]:

∇ · u ¼ 0; ρ
Du
Dt

¼ ∇ ·Π; ð1Þ
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where ρ, u, and Π represent the density, velocity, and stress
field in the fluid, respectively, and D=Dt is the material
derivative. Local orientational order is described using an
order parameter Q ¼ qð3nn − IÞ=2, a second order trace-
less symmetric tensor field [36] where q is the strength of
the orientational order, n is the director field, and I is the
identity tensor. The order parameter evolves according to
[37–39]

DQ
Dt

− S ¼ ΓH; ð2Þ

where S ¼ ðλEþΩÞ · ðQþ I=3Þ þ ðQþ I=3Þ · ðλE−
ΩÞ − 2λðQþ I=3ÞðQ∶∇uÞ is the generalized advection
term, Γ is the rotational diffusivity, H ¼ −A0ð1 − γ=3ÞQþ
A0γðQ · Q − ðI=3ÞQ2Þ − A0γQ2Qþ K∇2Q is the molecu-
lar potential, E and Ω are the symmetric and antisymmetric
parts of the velocity gradient tensor, A0 sets the scale for the
free energy, γ controls the temperature, and K is an elastic
constant determining the free energy cost of any variation
in the order parameter. The alignment parameter λ ¼
9qλ1=ð3qþ 4Þ determines the coupling between the veloc-
ity gradient and the orientational order. In the flow aligning
regime λ1 > 1, the director field aligns at a given angle to a
shear flow, while in the flow tumbling regime λ1 < 1, the
director field rotates under shear.
The passive contributions to the stress Π are the

Newtonian viscous stress, Πviscous ¼ 2μE and an elastic
stress, Πpassive¼−PIþ2λðQþI=3ÞðQ∶HÞ−λH ·ðQþ
I=3Þ−λðQþI=3Þ ·H−∇Q∶ðK∇QÞþQ ·H−H ·Q, where
μ is the shear viscosity of the fluid and P is the pressure.
The activity of the fluid particles generates an active stress,
Πactive ¼ −ζQ [40], where ζ describes the strength of the
activity. Extensile active forcing, ζ > 0, is needed to give
active turbulence in an isotropic phase [34].

Simulation details.—The equations of motion are solved
using a lattice Boltzmann method for the mass and
momentum conservation equations [Eq. (1)] and a method
of lines for the order parameter evolution equation [Eq. (2)]
[38,41,42]. It is not known how to map parameters in the
continuum model to physical values, so we choose param-
eters in the range that reproduces the behavior of 2D
microtubule and motor protein mixtures [24,43] and
express all quantities in lattice units. The simulation
domain [Fig. 1(a)] is a channel of length L ¼ 128, with
height h (shorter side) and width w (longer side) between 8
and 96, Γ ¼ 0.034, K ¼ 0.03, ζ ¼ 0.04, μ ¼ 0.6667,
ρ ¼ 1, and the free energy parameters are A0 ¼ 0.1 and
γ ¼ 2.6087, corresponding to the isotropic state of the fluid
[29,38]. Equating a typical length (size of the vortex) and a
velocity scale from experiments (100 μm and 10 μm=s in
[14]) and simulations (40 and 0.025 lattice units), our
results correspond to flows in microchannels of width
20–240 μm with velocity 0.12–36 μm=s. We use no slip
boundary conditions, and a no anchoring boundary con-
dition is imposed on the orientational order parameter at the
channel walls. Simulations are initialized with a stagnant
fluid and a randomly oriented director field.
Results.—We begin by investigating the conditions that

lead to a coherent (i.e., a net) flow along the channel. To
this end, we define an order parameter

ϕx ¼
�
�
�
�

�
uxðx; y; zÞ
juðx; y; zÞj

�

x;y;z

�
�
�
�
; ð3Þ

where h� � �ij denotes the average calculated along the jth
direction. If the flow is predominantly along the channel
length ux ≫ uy; uz everywhere in the channel, then
ϕx → 1, whereas for turbulent flows, where there is no
net transport of fluid along the channel, ϕx → 0.

(a)

(b) (c)

FIG. 1. Flow transition in an active nematic. (a) Schematic of the channel used in the simulations. (b) Variation of ϕx with λ illustrating
the turbulent (ϕx ≈ 0) to coherent (ϕx ≈ 1) flow transition. The corresponding root mean square velocity Vrms is plotted on the secondary
y axis. The dashed line indicates the λ corresponding to the tumbling-aligning transition in a simple shear flow. (c) Variation of ϕx with
channel aspect ratio for flow aligning nematics (λ ¼ 1.0). “⋄” indicates coherent (both unidirectional and oscillatory) and “⋆” indicates
turbulent (and vortex roll) flows. The dashed line shows the approximate aspect ratio (“AR”) at which the coherent to turbulent flow
transition occurs.
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Figure 1(b) shows the variation of ϕx with the flow
aligning parameter λ for a square channel with w ¼ h ¼ 16.
It is evident that increasing λ results in a sharp crossover
from no net flow in the flow-tumbling regime to coherent
flow when the fluid becomes flow aligning. We find that
this crossover is robust to changing activity ζ, orientational
elasticity K, the dimensions of the channel L and w (in the
range 500≲ ζw2=K ≲ 104), and the wall anchoring boun-
dary conditions (see Supplemental Material [44]).
We next restrict ourselves to the flow aligning regime

and, guided by the experiments [14], change the aspect
ratio of the channel cross section. To quantify the aspect

ratio, we define AR ¼ ðw − hÞ=w. For square channels,
AR ¼ 0, whereas if h and w differ significantly, AR → 1.
Figure 1(c) summarizes the geometry dependence of the

coherent to turbulent flow transition by measuring the flow
order parameter ϕx as a function of the aspect ratio of the
channel. Interestingly, there is a sharp transition between
coherent flow states and active turbulence as the aspect
ratio increases beyond ∼0.25.
To understand this behavior, we use the simulations to

more closely examine the details of the flow structure close
to the transition from net flow to the active turbulent state.
Near the transition point AR ≈ 0.25, neither a purely

FIG. 2. Active nematic flow states in a 3D channel. (a),(b) Unidirectional (h ¼ w ¼ 16). (c),(d) Oscillatory (h ¼ w ¼ 24). (e),
(f) Lattice of vortex rolls (h ¼ 24, w ¼ 32). (g),(h) Turbulent (h ¼ 24, w ¼ 96) flow states. The left-hand column shows the velocity
field color coded with normalized ux. The right-hand column shows the director field, plotted as a line integral convolution, color coded
with the scalar order parameter. Simulation parameters are λ ¼ 1.0, K ¼ 0.013, and ζ ¼ 0.022.
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laminar flow nor a fully developed turbulent flow is
observed. Instead, the active fluid can demonstrate oscil-
latory flow or a lattice of vortex rolls. The different flow
states observed as the channel size is increased are shown
in Fig. 2.
For very narrow channels, the active instability is sup-

pressed and there is no flow. An increase in the channel size
first leads to active flows that are completely unidirectional,
with a velocity vector that only has a component along the
channel length u ¼ uxðy; zÞx̂ [Fig. 2(a)]. For slightly wider
channels, the flows can develop an oscillatory component
and uy ≠ uz ≠ 0 [Fig. 2(c)]. However, the velocity along
the channel remains the dominant component of the
velocity field with its maximum value near the center line
of the channel. Since ux is dominant in both unidirectional
and oscillatory flows, these both manifest as coherent states
that result in a net fluid transport through the channel.
Further increases in the size of the channel can, however,

lead to flow configurations where the net flow is absent.
The vortex-roll state is characterized by three-dimensional,
counterrotating vortices located on a one-dimensional
lattice along the length of the channel, as shown in
Fig. 2(e). The axes of the vortices invariably lie along
the smallest channel dimension (y direction). On any cross
section perpendicular to the y direction, the 3D flow
appears similar to the dancing flows reported earlier in
2D simulations [28,29] and 2D confined microtubule and
motor protein mixtures [26]. Regions with q ¼ 0 appear in
the corresponding director field, indicating the presence of
disclination lines [Fig. 2(f)]. These structures are dynamic
and may form either in the bulk or near the walls. Finally, in
large channels, we recover active turbulence, characterized
by a spatiotemporally evolving director field [Figs. 2(g)
and 2(h)] that results in a contortion of the disclination lines
and their irregular spatial arrangement [31–33].
Mechanism.—We can now explain the disappearance of

net flow as the aspect ratios of the channels increase. First,
we note that, as a result of hydrodynamic screening, the
vorticity correlation length in the channel Lω is set by its
smallest dimension h. Evidence for this is presented in
Fig. 3(a), where we show that the vorticity correlation
length Lω (measured in the xz plane at y ¼ h=2) tracks h
until the channel becomes too wide to screen the flows and
the correlation length crosses over to its bulk value Lb

ω. For
comparison, Fig. 3(b) shows that there is no correlation
between Lω and the larger dimension of the channel cross
section w. However, the structure of the flow is determined
by w. If w≲ Lω, vortices cannot form, and there is a net
flow. If, however, w≳ Lω, the larger dimension of the
channel cross section becomes available for the flow
streamlines to turn, form vortices, and destroy the coherent
net flow along the channel. This also explains why the
vortex rolls are always ordered along the channel length
with their axis along the shortest dimension of the channel.
No analytical estimate for the exact value of the coefficient

in these inequalities is available. However, numerical
simulations of 2D confined active nematics [28] suggest
that w ∼ 1.4 × h when vortex rolls first form. This corre-
sponds to AR ∼ 0.28. Note that the argument breaks down
when both w and h are larger than the bulk correlation
length Lb

ω: active turbulence will then destroy any net flow
regardless of the aspect ratio.
Discussion.—Our results demonstrate that, in flow align-

ing, 3D, active microfluidics, the emergence of coherent net
flow states is controlled by the aspect ratio of the channel
cross section: coherent flows are possible in channels with
cross sections that are close to isotropic but are destroyed in
channels with larger aspect ratios. This can be explained by
whether or not vortex rolls have room to form across the
larger cross section dimension, thus destroying coherent
flow. The length scale of the vortices is set by hydro-
dynamic screening controlled by the smaller dimension.
The aspect-ratio dependence agrees with recent experi-

ments on microtubule-motor protein mixtures in micro-
fluidic channels [14]. However, to more closely compare
the results with the experimental system, the model in its
current form requires a number of adjustments. First, here
we assume a uniform density throughout the channel, while
the experiments clearly indicate that layers of concentrated
aligned microtubules can build up at the confining boun-
daries. Indeed, the experimental results were attributed to
such surface ordering, but we show here that the aspect-
ratio-induced flow transition does not require wetting of the
channel walls by a nematic layer. Second, it is possible that
free-slip velocity boundary conditions and weak-planar
anchoring of the director field (see [44]) will be a more
accurate representation of experiments as the microtubules
appear to weakly align and slide freely at the boundaries
[25,26]. We also show that the transition relies on the active
fluid being flow aligning, thus identifying the microtubule-
motor protein mixtures as belonging to this class of nematic
fluids.

(a) (b)

FIG. 3. Variation of vorticity correlation length against channel
dimensions. (a) Lω vs h and (b) Lω vs w. Ifω ¼ ∇ × u, then Lω is
determined as the distance r at which the correlation function
hωðrÞ · ωð0Þi calculated in the xz plane at y ¼ h=2 decays to
zero. Lb

ω is the vorticity correlation length in the bulk calculated
from bulk simulations. The solid line represents the line x ¼ y
and the dashed line is drawn at Lω ¼ Lb

ω.
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