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In periodically sheared suspensions there is a dynamical phase transition, characterized by a critical
strain amplitude γc, between an absorbing state where particle trajectories are reversible and an active state
where trajectories are chaotic and diffusive. Repulsive nonhydrodynamic interactions between “colliding”
particles’ surfaces have been proposed as a source of this broken time reversal symmetry. A simple toy
model called random organization qualitatively reproduces the dynamical features of this transition.
Random organization and other absorbing state models exhibit hyperuniformity, a strong suppression of
density fluctuations on long length scales quantified by a structure factor Sðq → 0Þ ∼ qα with α > 0, at
criticality. Here we show experimentally that the particles in periodically sheared suspensions organize into
structures with anisotropic short-range order but isotropic, long-range hyperuniform order when oscillatory
shear amplitudes approach γc.
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At vanishingly small Reynolds numbers, the Navier-
Stokes equations take the form of the time-reversible
creeping-flow Stokes equation. Experiments aimed at
exploring the time reversibility of Stokes flow in the
presence of hard particles under cyclic shear reveal the
surprising result that steady state particle trajectories at
small strains γ are reversible but at large strains are chaotic
and diffusive [1,2]. Subsequently it was understood that
nonhydrodynamic interactions, “collisions” [2,3], lead
to rearrangements of the particle configurations until
the system evolves—self-organizes—into a configuration
where there are no particle collisions—an absorbing state.
Above a critical strain γc, however, the system can no
longer find such a configuration and continues evolving
indefinitely—an active state.
A simple toy model, random organization (RO), captures

much of the dynamics of this transition, predicting, for
example, the divergence in the time to find an absorbing
state below the transition or the time to reach steady state in
the active phase as a function of jγ − γcj [2]. This ROmodel
belongs to a class of absorbing state dynamical models that,
because they exhibit greater activity in denser regions, tend
to become hyperuniform at their critical points [4–7]. At
criticality, their long length scale density fluctuations
become vanishingly small [8] and are characterized by a
structure factor Sðq → 0Þ ∼ qα where α > 0. The value of α
is universal for a given dimension in this class of absorbing
state transitions, e.g., α ¼ 0.25 in 3D [4]. Such disordered
but hyperuniform particle distributions have been conjec-
tured to have unique optical and scattering properties
[9–11]. They are impossible to achieve for equilibrium
structures of particles with finite-range interactions.
In this Letter we show experimentally that the transition

between absorbing and active states of periodically sheared

suspensions has at its critical point a structure that
suppresses long-range density fluctuations and induces
hyperuniform order in an otherwise fluid suspension of
colloidal hard spheres. While the quiescent suspension is
isotropic, the shear strain breaks the isotropy and this is
readily observed in Sðq ∼ 1Þ. Remarkably, SðqÞ becomes
isotropic as q → 0 with SðqÞ ∼ q0.25 when the periodic
strain amplitude approaches γc. We show that these
dynamical and long-range structural features are repro-
duced quantitatively in simulations of an RO model that is
modified to include a repulsive bias in the random displace-
ments assigned to colliding particles. This minimal modi-
fication accounts for the increased excluded volume of
suspensions at higher densities and provides evidence of
universality for these dynamical and structural nonequili-
brium phenomena.
Our colloidal suspension is composed of monodisperse

d ¼ 1.20-μm-diameter copolymer particles [12] dispersed
in 1-hexyl-3-propanenitrile imidazolium chloride [13], a
room-temperature ionic liquid with a viscosity of 20 Pas,
20 000 times the viscosity of water. The chemical compo-
sition of the random copolymer, methyl methacrylate,
trifluoroethyl methacrylate, and tert-butyl methacrylate is
chosen to match the refractive index and density of the
particles to that of the suspending fluid and to allow surface
grafting of a polyelectrolyte brush that provides short-
range, effectively hard-sphere, repulsive interactions
between particles. See the Supplemental Material [14]
for more details about sample synthesis, which includes
Refs. [7,12,13,15,16].
We use a piezo-controlled rotation stage to precisely

shear the suspension using a three degree cone-plate
geometry. We shear the sample periodically using a
symmetric triangular waveform and employ a standard
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coordinate system: û is the flow direction, ∇̂ is the gradient
direction, and ω̂ is the vorticity direction. We image the
particle suspension in three dimensions using a confocal
microscope. The spatial resolution is lower along the ∇̂
direction, as this corresponds to the confocal z direction.
To identify the critical strain γc, we image a 2D

horizontal slice in the û-ω̂ plane once per shear cycle
and track the mean squared displacement (MSD) per cycle
[17] of particles as a function of applied strain, where the
period of one cycle is eight seconds. We initialize the
system using 100 cycles at 5γc to erase any memory of
previous runs. We then use a step-wise decreasing strain
ramp, starting at γ > γc and strain for 100 cycles at each γ,
which allows us to identify the transient and steady-state
MSD/cycle (effective diffusion constant), using MSDi ¼
h½xiðNÞ − xiðN − 1Þ�2i, where N is the cycle number, x is
the particle’s location, and we average over all particles in
the imaging plane, approximately ð9000� 200Þϕ particles.
As expected from previous studies, large strain amplitudes
where γ > γc produce large random displacements in
steady state, while smaller strain amplitudes where
γ < γc produce no particle displacements beyond those
of ordinary thermal Brownian motion. The Brownian
motion of the particles is characterized by a diffusion
coefficient D ¼ 2 × 10−5 μm2=s measured in a very dilute
unsheared suspension. The thermal diffusion is small, with
typical displacements that are only 3% of the particle
diameter per cycle. The Brownian diffusion provides a
lower limit to the measured MSDs but the dynamical
behavior separating the absorbing and active states is still
clearly evident, as shown in Fig. 1(a).
We perform this ramp-down protocol on suspensions

with volume fractions ϕ ¼ 0.25, 0.31, and 0.40. The
transition to the absorbing state is rounded by Taylor
dispersion at smaller volume fractions due to a larger
strain rate and a slight increase in Brownian diffusion
[18,19]. Therefore, we identify γc as the strain at which the
linearly extrapolated MSD per cycle in the chaotic regime
intersects the strain-independent thermal Brownian diffu-
sion. We find that the transition sharpens at higher volume
fractions, with critical strains γc that decrease with increas-
ing ϕ. The inherent anisotropy of the applied shear is
reflected in the much larger MSD of particles along û than
along ω̂. In more dilute samples, this anisotropy is also
evident in the reversible state, as the residual Brownian
motion along the flow direction is also amplified by Taylor
dispersion, as shown in Fig. 1(b).
To examine the effect of this dynamical transition on the

structural properties of the suspension, we image a three-
dimensional volume of the suspension between shear
cycles and compute the structure factor of the particle
density, SðqÞ ¼ hρ̃ðqÞρ̃ð−qÞi=Vhρi, where ρ̃ðqÞ ¼P

i e
−iq·xi is the Fourier transform of the measured particle

density. We locate ð390 000� 5000Þϕ particles for each
3D imaging volume. Because we can only image 25d into

the sample, we integrate the particle density along ∇̂ and
calculate Sðqu; qω; q∇ ¼ 0Þ with a nonequispaced FFT
(NFFT) [15]. As shown in the Supplemental Material
[14], this two dimensional projection does not change
the critical exponent α.
For unsheared suspensions in thermal equilibrium, SðqÞ

of the suspension is well approximated by the Percus-
Yevick structure factor for hard spheres [20]. To measure
the steady-state value of SðqÞ for sheared suspensions we
apply a large initial strain amplitude, γ ¼ 30, to erase any
memory of previous measurements and immediately
decrease the strain amplitude to the prescribed γ value,
recording three-dimensional images and particle positions
as the suspensions reach steady state. From these transient
measurements, we use exponential fits for every q value to
extrapolate the steady state SðqÞ. To reduce noise, we
angularly average each q, denoted as S̄ðqÞ.

(a)

(b)

FIG. 1. (a) Top: the mean squared displacement per cycle
(MSD/s), an effective diffusion constant, measures the magnitude
of random displacements along the strain direction given the
strain amplitude protocol (bottom) for a suspension of volume
fraction ϕ ¼ 0.4 where 1 cycle ¼ 8 s. (b) The steady state MSD/
s is plotted as a function of strain amplitude for both the strain
(blue) and vorticity (orange) directions for suspensions of volume
fraction ϕ ¼ 0.4, 0.31, and 0.25.
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For γ < γc, S̄ðqÞ does not differ significantly from its
equilibrium behavior for length scales less than a few particle
diameters, that is for q ≳ π=d. By contrast, for q < π=d,
S̄ðqÞ decreases continuously as γ approaches γc, indicating a
growth in long range correlations. At γc, the system exhibits
hyperuniform scaling: S̄ðq; γcÞ ∼ qα, with α ¼ 0.25� 0.03,
as shown in Fig. 2(a). For γ > γc, S̄ðq; γcÞ tends to increase
for q < π=d, and its deviation from equilibrium becomes
more pronounced, as shown in Fig. 2(b).
This critical scaling of the long-range density correla-

tions of suspensions sheared at γc is evident over a wide
range of volume fractions, as shown for measurements of
suspensions with ϕ ¼ 0.12, 0.25, 0.31, and 0.40 shown in
Fig. 2(c). Moreover, we find that it is possible to collapse
the small q values of S̄ðq; γcÞ for all of these volume
fractions by scaling them by their respective Percus-Yevick
Seqð0Þ, as shown in Fig. 2(d). All critically sheared
suspensions fit the form S̄ðq; γcÞ=Seqð0Þ ¼ Aq0.25 at small
q, where A ¼ 1.
This universal scaling observed at small q, however, is not

seen at large q, where the anisotropy imposed by the shear
flow is evident. Angularly resolved plots of SðqÞ show clear

anisotropy for lower volume fractions, with correspondingly
higher critical strain amplitudes. But even dense suspensions
show anisotropic correlations at length scales corresponding
to the typical interparticle spacing, as shown in Fig. 3(a).
Nevertheless, the difference in SðqÞmeasured along the flow
direction SðquÞ and along the vorticity direction SðqωÞ
vanishes at small q and becomes isotropic for all measured
volume fractions [Fig. 3(b)].
The experimental data show clear dynamical and struc-

tural scalings near γc that are qualitatively shared by the RO
model, including the value of the scaling exponent,
α ≈ 0.25, but with a different dependence of γc on ϕ. In
the RO model, the critical strain γc is large for small ϕ and
goes to zero near ϕ ¼ 0.2, meaning there are no absorbing
states and no critical dynamics for ϕ > 0.2. In experiments,
however, we measure critical dynamics for volume frac-
tions up to ϕ ¼ 0.4. Therefore, we cannot quantitatively
account for the experimental observations within the simple
RO model.
To better account for our experimental observations, we

modify the interactions in the model. At each simulation
step, pairs of overlapping particles are given equal and
opposite repulsive displacements of uniform random

(a)

(b)

(c)

(d)

FIG. 2. Structure factor of sheared suspension with volume fraction ϕ ¼ 0.25 for amplitudes (a) below and (b) above the critical value
γc ¼ 2.5 compared to equilibrium structure factor computed from Percus-Yevick approximation (dashed line). (c) Particle structure
factors measured near the critical strain amplitude for volume fractions ϕ ¼ 0.12, 0.25, 0.31, and 0.40. (d) Dividing measured S̄ðqÞ
shown in (c) by the equilibrium values of Seqðϕ; q → 0Þ for each ϕ collapses all S̄ðqÞ at small q.
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magnitude between 0 and ϵd along the line connecting their
centers. In addition, they are given a displacement in a
random direction of magnitude ϵr chosen from a Gaussian
distribution of width ϵr0 . The relative magnitude of
these displacements is specified by a control parameter
δ ¼ ϵd=ðϵd þ ϵr0Þ, where δ ¼ 0 corresponds to simple
RO. Here we report results with ϵd þ ϵr0 ¼ 0.1d; the results
are insensitive to this choice. The δ ¼ 1 limit corresponds to
zero temperature Brownian dynamics with constant repul-
sive pairwise interactions, like the 3D monodisperse simu-
lations in [21], and we recover ϕc → 0.639, close to the
random close packing volume fraction of monodisperse
spheres. For simplicity we only consider γ ¼ 0, so the
control parameters for the transition are now ϕ and δ instead
of ϕ and γ. From the simulations we obtain the steady-state
fraction of active particles f∞a as a function of the reduced
control parameter (δc − δÞ=δc, and find that f∞a ∼ ½ðδc −
δÞ=δc�0.84 in the active phase, which is consistent with the
Manna model critical exponent for activity β ¼ 0.84 [22].
The data collapse onto a single curve when using a model
dependent prefactor δ0.75c , as shown in Fig. 4(a).
We calculate the structure factor SðqÞ at the critical

control parameter δcðϕÞ for each of the volume fractions
used in the experiments. The results of the simulations
and the experiments show remarkable agreement at small
qwith no adjustable parameters, as shown in Fig. 4(b). This
suggests that the modified RO model is in the
same universality class as the simple RO model and
other absorbing state models exhibiting the same
critical exponent α. The deviations of SðqÞ from the

(a)

(b)

FIG. 3. (a) Structural anisotropy is manifested in Sðqu; qωÞ by
differences along two principle axes of shear, velocity and
vorticity, for critically sheared suspensions with ϕ ¼ 0.12,
0.25, and 0.40. (b) The relative difference of ½SðquÞ −
SðqωÞ�=SðqωÞ along two directions shows the strength of
anisotropy as a function of q.

(a) (b)

FIG. 4. (a) The fraction of active and overlapping particles in steady state for the repulsive random organization model, f∞a , plotted as a
function of the reduced control parameter, ðδc − δÞ=δc. Inset: active particles (red) receive two displacements per cycle: a repulsive one
(solid arrow) and a random isotropic one (dashed arrow), while isolated particles (blue) do not move. (b) Structure factors of simulated
(dashed lines) and experimental (points) configurations measured at δcðϕÞ and γc agree remarkably well with each other at small q for
every volume fraction.
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experimental measurements for larger q stems from the
lack of anisotropy in the model: smaller volume fractions
exhibit larger deviations from experimental data for q ≳
0.2π=d because of their greater anisotropy, consistent with
the data in Fig. 3(b).
The fact that experimental critical density correlations

measured by SðqÞ over a wide range of volume fractions
exhibit the same long-range scaling behavior as an entire
class of dynamical models and that a minimal modifi-
cation to random organization is sufficient to quantita-
tively reproduce the small q behavior of experimental
data, suggest that the mechanism that drives self-
organization in these critical dynamical systems towards
hyperuniform structures is universal and robust. Here,
we see that it is tolerant of Brownian diffusion that
smooths the transition between absorbing and active
phases.
Although hyperuniformity in non-crystalline disordered

systems has not been found theoretically or experimentally
for any equilibrium system with short range interactions,
this paper demonstrates that hyperuniform materials are
available through nonequilibrium processing: in this case,
the result of an absorbing state transition. This opens the
question of whether hyperuniform materials can be made
by other dynamical methods and provides such materials
for investigation of their potentially useful physical proper-
ties, such as band gaps for transmission of different types
of waves.
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