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Pure quantum states can be stabilized in open quantum systems subject to external driving forces and
dissipation by environmental modes. We show that driven dissipative (DD) Majorana devices offer key
advantages for stabilizing degenerate state manifolds (“dark spaces”) and for manipulating states in dark
spaces, both with respect to native (non-DD) Majorana devices and to DD platforms with topologically
trivial building blocks. For two tunnel-coupled Majorana boxes, using otherwise only standard hardware
elements (e.g., a noisy electromagnetic environment and quantum dots with driven tunnel links), we
propose a dark qubit encoding. We anticipate exceptionally high fault tolerance levels due to a conspiracy
of DD-based autonomous error correction and topology.
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Introduction.—Open quantum systems may be stabilized
in a pure quantum state for arbitrarily long times by the
interaction with an external driving field and a dissipative
environment [1-13]. Such DD-stabilized dark states are
eigenstates of the Lindbladian dissipator with zero eigen-
value when the system dynamics can be described by a
Lindblad equation [14-18]. The latter is the most general
Markovian master equation preserving the trace and semi-
positiveness of the density matrix. Using trapped ions or
superconducting qubits, DD-stabilized dark states have
recently been implemented experimentally [19-27]. For
a stabilized manifold of multiple degenerate dark states
(a dark space) [19,28-30], a robust quantum memory
platform can be envisioned. Moreover, once states within
a dark space can also be manipulated in a protected way,
fault-tolerant quantum computing schemes without active
feedback may become a viable option (see Refs. [31-38]
for related work). At present, experimental studies of
autonomous error correction in a DD qubit [25,27,39,40]
report fidelities below 90% for state stabilization and
significantly lower fidelity for gate operations.

In this Letter, we show that devices harboring Majorana
bound states (MBSs) [41-53] provide a particularly attrac-
tive platform for the DD stabilization of degenerate dark
spaces and for manipulating states in such spaces. The use
of topologically protected building blocks for stabilizing
DD dark spaces offers several key advantages for quantum
state stabilization and manipulation protocols when com-
pared to DD schemes with topologically trivial building
blocks or to topological platforms without DD protection:
(i) Majorana-based dark spaces benefit from both topo-
logical protection and DD-based autonomous error correc-
tion capabilities. In particular, the reduced intrinsic noise
levels expected from the topological protection help to
avoid unwanted residual dissipation effects within the dark
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space manifold [54]. (ii)) As indicated in Fig. 1, our DD
protocols exploit unidirectional cotunneling processes
between pairs of quantum dots (QDs), which are connected
by tunnel contacts to MBSs and by a driven tunnel link
to each other. Dissipation here originates in a natural way
from the electromagnetic environment. A weak driving
field serves to pump electrons from QD 1 to the energeti-
cally high-lying QD 2 in Fig. 1, and the electron transfer
from QD 2 — 1 then proceeds by inelastic cotunneling.
By choosing predesignated tunnel couplings, this pumping-
cotunneling cycle allows one to engineer at will jump
operators acting on the Majorana state. Once a working
Majorana platform becomes available, only standard
hardware elements are needed to realize the proposed
DD Majorana setups. (iii) The MBS-based dark space
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FIG. 1. Driven dissipative Majorana device with two tunnel-
coupled Ma}orana boxes. (a) Each island harbors four Majorana
states (yZZL R, red dots). The latter are shown as end states of
topological hybrid nanowires (horizontal bars), which are con-
nected by a superconducting bridge (vertical bar) to form a
floating mesoscopic island [55,56]. Two quantum dots (boxes 1
and 2) are connected by tunnel contacts (wavy lines) to
Majoranas. A driven tunnel link (solid line) connects both dots.
The colored arrows illustrate the pumping-cotunneling cycle
explained in the main text, stressing the nonlocal character of
the processes involved. The shown trajectory amounts to the
action of the operator Z; Y on the Majorana state [see Eq. (1)].
(b) Electromagnetic fluctuations of the surrounding electric
circuit, modeled by the capacitance C, and the impedance
Zy(w), cause inelastic tunneling processes.
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stabilization is very robust with respect to variations of
stabilization parameters. Deviations of up to &10% in these
gate-tunable parameters are tolerable while retaining almost
perfect fidelity. This remarkable degree of robustness is due
to the spatial disentanglement of drive and dissipation
processes (see Fig. 1), which in turn is connected to the
nonlocality of the MBS system. (iv) State preparation and
manipulation protocols within the dark space can be
implemented in a flexible and rather simple manner.

We here illustrate these points for a device with two
tunnel-coupled Majorana boxes [55,56] operated under
Coulomb blockade conditions (see Fig. 1 for a schematic
sketch). Each box harbors four MBSs. Our main results are
as follows. We first show that over a wide parameter regime
the dynamics in the Majorana sector is governed by a
Lindblad equation, Eq. (5) below, which includes a
Hamiltonian describing the unitary part of the time evo-
lution and a Lindbladian dissipator responsible for the
dissipative dynamics. Second, we demonstrate that this
system can be engineered to support a multidimensional
degenerate dark space. Third, to ensure that a generic initial
state evolves toward a designated pure state within the dark
space, one has to adiabatically break the degeneracy of the
dark space during the intermediate stages of the protocol.
We view this as a paradigmatic protocol (applicable to even
more complex systems) for the preparation and manipula-
tion of a state within a degenerate dark space, where we also
explain how to optimize the speed of approach and the
fidelity. Finally, we show how to manipulate states within
the dark space. Our results are illustrated for a dark space
that is equivalent to a fault-tolerant dark qubit. We note
that in networks of coupled dark qubits, the active error
correction required in Majorana surface code proposals
[57-62] could become obsolete. Detailed derivations
and specific state stabilization protocols are described
in Ref. [63].

Model.—Consider the architecture in Fig. 1, where two
Coulomb-blockaded topological superconductor islands
(x =L/R for the left/right island) harbor in total eight
MBSs with operators y< = (y5)', where v = 1, ..., 4. They
obey the anticommutation relations {y%,75} = 23,8,
We here assume that all MBSs are sufficiently far away
from each other to represent zero-energy states. In addition,
the relevant energy scales should be below the pairing gap
A such that above-gap quasiparticles can be neglected.
Each mesoscopic island in Fig. 1 has a large (and, for
simplicity, equal) charging energy E and is operated under
Coulomb valley conditions. At temperatures T < E, the
charge on the island is then quantized on timescales
6t > 1/E, implying a parity constraint for the Majorana
sector of each box, yy5y5y4 = %1 [56]. Since the charge is
gapped out, the remaining twofold degeneracy of the
ground state of each island corresponds to the presence
of two Majorana qubits [56]. The respective Pauli operators
are [64]

Z.=irjys. (1)

This nonlocal representation allows one to access all
Pauli operators through electron cotunneling processes
between pairs of tunnel-coupled QDs [55,56,59,60]. We
also need a phase-coherent tunnel link between the boxes,
Hpg = it gykyR, with real-valued 7, > 0.

The single-level QDs in Fig. 1, with electron annihilation
operator d; for the jth QD, are described by the dot
Hamiltonian H; = > ;_ 5 € jd;d ;» where the level energies
€1 < €, should satisfy |e;| < Ec, A. The QDs are con-
nected by a driven tunnel link, which we model by
Hgiive (1) = 2A cos(wyt)d]d, + H.c. [65] with drive ampli-
tude A. The driving frequency wy is tuned in resonance with
the transition energy between the QD levels wy = ¢, — €.
Since the Majorana boxes are operated under Coulomb

X =773, Y =575,

valley conditions, the total occupancy Ny = _; d;d ; of the
QDs is also conserved on timescales 6t > 1/E [66]. We
study the case N; = 1, where a single electron is shared by
both QDs. Finally, inelastic tunneling processes connecting
QDs with the respective MBSs in Fig. 1 are modeled by

Hun = 10Y 4jce”Peidlys + He., 2)

EZS

where the e (e~#x) factors in Eq. (2) ensure that an
electron charge is added to (subtracted from) the respective
island in a tunneling process [67-69]. With the overall
energy scale 7y < E, the complex-valued parameters 4; ,,
with |4;,,] <1 encode the transparency of the tunnel
contact between d; and yy [70]. For the setup in Fig. 1,
the only nonzero parameters are 4, 37, 41 1z, and 4, 3z. The
electromagnetic environment enters Eq. (2) through fluc-
tuating phase operators 6;, which cause dephasing on the
respective QD [67,68,71,72]. For simplicity, these fluctua-
tions are described by a single bosonic bath: H.,, =
S E,bhb,,, where E,, >0 and 6’]-:ngj,m(bm+bj;,)
with couplings g; ,,. The phases 6; appear below only via
the combination § = 8, —@,, where we define a bath
spectral density J () =7z, (g1.m—9o.m)* Ex6(@w—E,,).
We study the most relevant Ohmic case (see also Ref. [73]),

J (@) = awe™/, (3)

where a = (e?/2h)ReZ(w = 0) is a dimensionless system-
bath coupling and frequencies above the scale w,. are sup-
pressed. Here Z(w) = [Z5! (@) + iwCy)~! is the dynamical
impedance of the environment [see Fig. 1(b)], and we study
the regime a < 1. To avoid photon-assisted excitations of
above-gap quasiparticles or higher-charge states on the
islands, we demand w, < Ec, A. Non-Ohmic environ-
ments [17] can similarly be studied. However, for the
sub-Ohmic case, the mapping to a Lindbladian master
equation is problematic, while for the super-Ohmic case,
dissipative gaps can become very small.
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Lindblad equation—We focus on the weakly driven
regime defined by
Go < T < wy, A < o, o = totLr/EE (4)
where the energy scale §, characterizes the relevant
cotunneling processes (see below). The driving-induced
rate for pumping electrons between QDs 1 and 2 is thus
assumed small against cotunneling rates. The condition
o < T is needed to justify the Born-Markov approxima-
tion, while T < w, is required for the rotating wave
approximation. Both approximations are used for deriving
the Lindblad equation. Next, we switch to the interaction
picture with respect to H,; + H,.,, and use third-order
perturbation theory in the tunnel couplings to project the
theory to the lowest-energy charge sector of each island.
We then trace the von-Neumann equation over the bath and
the QD degrees of freedom. As a result, the reduced density
matrix py,(¢) describing the Majorana sector obeys the
Lindblad equation [63]

aZpM(I) HLHOM

J+ > T.LK, (5)

n=12

where the dissipator £ acts on p, according to [17]
LKlpy = KpuK" = H{K'K, py}. With A, = t,2/Ec <
1 and the Pauli operators (1), we obtain the two jump
operators in Eq. (5) as

. A
Ky = ie'2|2, 3p| (e_’ﬂ‘ |/11'—1R|XR + iMl,Z%LlZLYR) (6)
LR

and K, = K7, using the gauge choice A, 1z = |4, 1z|e 1,
Jar = |A1acl, and Ayag = |Ay3z|e7>. The coherent evo-
lution in Eq. (5) is due to the Hamiltonian

HL = 2ngKz + Z hnKlerw
n=1.2

K. =sinf |’11,1R/11,3L|ZLZR- (7)

For the spectral density in Eq. (3), assuming @, > @, the
dissipative transition rates I', and the Lamb shift param-
eters h, are given by

Iy =2pI(1 = 2a) sm(Zﬂa)( ) go
(O a)O

1=
F2 e ( p) e_wO/Tr'l’
2p

1—
hy = 4-p e=/Thy, (8)

1
l’l] = icot(ZJTa)Fl s 2p

where p ~ A/w is the steady-state occupation probability
of the energetically high-lying QD 2, and I'(z) denotes the
Gamma function.

At low temperatures T << @, the ratios I", /T and h, /h;
are exponentially small, and therefore only the jump
operator K| is important. This operator can be traced back
to unidirectional cotunneling transitions, where an electron
is transferred from QD 2 to QD 1 by cotunneling through
the double-box setup. In the steady state, a weak drive
amplitude A is then responsible for pumping the dot
electron back (from QD 1 — 2) via the driven tunnel link.
We note that the parameters A, oy, @, .., and §, only affect
the rates I',, and Lamb shifts /,,, which in turn determine the
speed of approach toward the dark space. The dark space
itself, however, will be determined by the choice of the
jump operator K, which can be engineered by tuning the

“state design parameters” 4; . [see Eq. (6)]. These param-
eters can be adjusted via gate voltages. The ability to design
jump operators via unidirectional cotunneling processes in
such a manner is rooted in the nonlocal Majorana repre-
sentation of the Pauli operators in Eq. (1), and thus in the
underlying topological nature of our DD system.

Dissipative maps.—The key idea of our DD protocols is
to choose the state design parameters 4;,, such that K,
implements a selected dissipative map [10,12], which in
turn directly drives p,,(¢) to the desired dark space. Below

w.) = (]00) £ [11))/+/2 and
) = (|01) £ |10))/\[, Wthh are eigenstates of both
Z;Zr = *£1 and X; Xp = %1 and span the Hilbert space of
the two qubits in Eq. (1). We then define the dissipative
maps £, = (1+Z,Zz)Xg (see Ref. [22]). In the
Lindblad equation, a dissipative term o L[E; _]py, will
map even-parity (Z;Zp = +1) states onto the respective
odd-parity states, e.g., £y _|w,) = |¢.). In contrast, odd-
parity states do not evolve in time, £ _|¢,) = 0, and thus
represent steady-state solutions. (Similarly, £ |+ maps odd-
parity to even-parity states.) As is shown next, under the
dissipative map E, _, the system can then be driven into the
degenerate odd-parity sector spanned by |¢, ) and |¢_).

Dark space stabilization.—We now choose the param-
eters in Eq. (2) as

pr=m, 11kl = AcrlAracls 9)
with arbitrary |4, 3z| and f,. Inserting Eq. (9) into Eq. (6)
shows that K|  E 1.—. Moreover, from Eq. (7) we obtain
H; «x Z;Zy. Since the dissipator in Eq. (5) only involves
K, xE - at T < w,, the desired dissipative map can be
realized without obstruction from the Hamiltonian dynam-

ics. For this case, we can identify four conserved quantities
(cf. Ref. [10]),

1

Cl,:l: = E(ﬂ + ZL) C2.:k: = E(XL + iYL)XR- (10)

The basis of the matrix Hilbert space corresponding to the
dark space [10] then follows as
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Ml,i = (]] iZL)(]] :F ZR),

My =—(X; £iY;)(Xg F iYpg). (11)

Bl— -

The above DD protocol thus stabilizes a degenerate
dark space of dimension D =4 in the terminology of
Refs. [10,12], which in turn coincides with the dark space
dimension of a stabilized qubit space. The Pauli operators
(Xp, Yp, Zp) for the resulting dark Majorana qubit can be
chosen as

Xp =X Xp = _7’]1“7’%7157537

Yp =Y Xp=vivsvirs.  Zp=Z,=iriy;.  (12)
The DD qubit encoding (12) is essential for fault tolerance,
comparable to the formation of logical vs physical qubits in
surface codes [74]. In our case, the DD protocol adds an
extra protection layer on top of the topological protection of
a native Majorana qubit. In particular, pure states will
thereby be stabilized for indefinite time [75].
Approaching the dark space.—Starting from an arbitrary
initial state p,,(0), we monitor the approach toward a
pure target state |¥) in terms of the fidelity F(r) =
tr[|¥) (¥|pu (2)], where py,(t) is the solution of Eq. (5).
During the time evolution, all symmetry properties of the
initial state other than parity remain preserved. For exam-
ple, starting with p;(0) = |y ) (|, since X; Xz = +1 is
kept as one approaches the target state, one finds |¥) =
|¢p,) within the dark space. In Fig. 2, we show the fidelity
obtained by the numerical integration of Eq. (5) for a
maximally mixed initial state p,,(0) =11 ® 1, where the
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FIG. 2. Fidelity for approaching the dark space starting from
a maximally mixed initial state. Main panel: Fidelity vs time,
with EC =1 meV, f]O/EC = 10_4, T/go = 2, CU()/QO = 200,
w./Go = 10°, @ =10.99, p(A) = 0.01, and |1,3;| = 1. The red
curve is for ideal state design parameters [see Eq. (9)] with
|21.17| = 1. The blue (green) curve is for parameters with a 10%
(20%) deviation from their respective ideal values. Inset: Asymp-
totic (r — oo0) fidelity vs percentage deviation Af; from f; = =
with otherwise ideal parameters.

corresponding target state is |¥) = (|¢.) + |¢_))/v/2. We
note that if the initial state is not precisely known, one can
first stabilize an arbitrary state inside the dark space and
subsequently drag that state toward the desired target state
using the method described below. A convenient way to
initialize the dark qubit is to employ the tunnel couplings to
a third QD [63]. Figure 2 demonstrates that the dark-space
fidelity is extremely robust against variations of the
stabilization parameters 4;,.. Even when allowing for
“errors” of 20% in all these parameters, the fidelity is still
F =~ 0.9. The timescale for approaching the steady state is
given by the inverse of the dissipative gap Ag, Which is
the smallest real part of the nonzero eigenvalues of the
Lindbladian dissipator. For the above DD protocol, we
obtain Ay = [44; 3142 3r]> D, T resulting in AZL ~ 3 us
for the parameters in Fig. 2. Finally, methods for readout of
the target state can be formulated as for the native Majorana
qubit [55,56,63].

State manipulation.—We next discuss a general manipu-
lation protocol moving an initial pure state in the dark space
to an arbitrary final state in the dark space. We adiabatically
switch on a perturbation breaking at least one conservation
law in Eq. (10). The perturbation breaks the qubit degen-
eracy during the protocol, but once the perturbation is
switched off, the degenerate dark space is fully stabilized
again. The main challenges are to avoid coupling the dark
space to other Hilbert space sectors that are not part of the
decoherence-free subspace and to preserve the purity of the
state. In particular, the drive should not connect odd- and
even-parity sectors. It is convenient to break two conserved
quantities at any given time, leaving a twofold degeneracy.
The simplest protocol employs a “Z; drive” realized by
coupling ¥ and y% [see Eq. (12)]. We thus add a term
H; = iAz(t)ykyS = A4(t)Z;. The hybridization energy
Ay(r) can be adiabatically changed using a gate-tunable
tunnel link. H, commutes with Z; Z, and thus conserves

0.0
—0.51
710 4
0 5 10 15 20
t [ns]
FIG. 3. State manipulation by a Z; drive (see main text) with

Az/Ec = 107*. We use the state design parameters in Eq. (9) and
other parameters as in Fig. 2. The dynamics of the expectation
values of the Pauli operators (12) reveals oscillatory qubit
coherences. At all times, we numerically find (Z;) = 0 and,
of course, (Z; Zz) = —1 (odd parity).
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parity. The evolution generated by H, therefore automati-
cally remains in the odd-parity sector. Since [H,, C,] # 0
and [H,, C3] # 0 [see Eq. (10)], dark state coherences now
depend on time. This is confirmed by our numerical results
for constant A, in Fig. 3, where we start from p,,(0) =
|p_)(¢_| and find oscillations in the real part, (X, (1)) =
(X; Xg)(t), and the imaginary part, (Y (1)) = (Y, Xg)(2),
of the coherences. In the Bloch vector representation, the
dark state periodically rotates in the xy plane with oscil-
lation period A;!, where A7 ~ 6 ns in Fig. 3. For a general
adiabatic protocol A,(7), it stands to reason that an arbitrary
final state inside the dark space can be reached.

Conclusions.—We have introduced a DD Majorana
platform for stabilizing a degenerate dark space that offers
several key advantages. In particular, the spatial disentan-
glement of drive and dissipation processes rooted in the
topological protection of MBSs allows for remarkably
high levels of robustness. Future work should address
the fidelity and purity during state manipulations and the
high-dimensional dark spaces in DD systems with many
coupled boxes.
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