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Calculations of the opacity of hot, dense matter require models for plasma line broadening. However, the
most general theories are too complex to calculate directly and some approximation is inevitably required.
The most widely used approaches focus on the line center, where a Lorentzian shape is obtained. Here, we
demonstrate that in the opposite limit, far from the line center, the opacity can be expressed in terms of
second-order transitions, such as electron-photon and two-photon processes. We suggest that this insight
could form the basis for a new approach to improve calculations of opacity in hot, dense matter. Preliminary
calculations suggest that this approach could yield increased opacity away from absorption lines.

DOI: 10.1103/PhysRevLett.125.145002

The opacity of hot, high density material is important for
both terrestrial and astrophysical applications, for example
in modeling inertial confinement fusion [1–3], stellar
physics [4,5], and planetary interiors [6–8]. Predicted
opacities, alongside equations of state and the abundances
of heavy elements, are key inputs to solar models [9]. An
increase in predicted opacities could help to reconcile
discrepancies between solar models and helioseismic
measurements that presently exist [10].
Some recent measurements of iron under solar condi-

tions have yielded opacities in excess of predictions
[11,12]. In particular, increased opacity was observed in
regions between characteristic absorption lines. Such
regions make the strongest contribution to the Rosseland
mean opacity, which encapsulates the influence of the
opacity on radiation transport [13]. However, the measured
opacities cannot be explained within the current theoretical
consensus [14,15] and are hard to reconcile with the
upper limit for single-photon dipole absorption imposed
by f-sum rules [16].
Such experimental findings have prompted recent

interest in two-photon transitions as a possible source of
opacity. Two-photon transitions are obtained from second-
order perturbation theory and can be interpreted as the
simultaneous absorption or emission of two photons. Since
the energy required for the transition may be divided
between the two photons in any ratio, two-photon
processes yield a continuum of absorption reminiscent of
the additional opacity seen experimentally. Furthermore,
being at second order in perturbation theory, two-photon
opacity may exceed the limits of f-sum rules. However,
published results have reached mixed conclusions, with the
most detailed calculations finding that two-photon rates
should be negligible under the relevant conditions [17–19].

Two-photon processes are not the only mechanism
unconstrained by the f-sum rule. In dense plasmas, the
absorbing ions are also perturbed by the plasma electrons
and ions. This results in broadening of the spectral
lines, a process that has been widely explored [20–23].
We can, however, describe line broadening in a novel way
by identifying a process that is the collisional analog
of a two-photon transition. This process, which we call
the electron-photon process, consists of a photon absorp-
tion and an electron collision occurring simultaneously.
Although line broadening is not usually approached
in this way, the appearance of some satellite lines has
been explained in terms of electron-photon transitions
[24,25].
Both the electron-photon description and more conven-

tional line broadening approaches aim to describe the same
physical process. However, the extent to which they are
formally equivalent is not immediately apparent. A similar
uncertainty exists in the case of two-photon transitions.
While it has been suggested that two-photon processes
might be interpreted as line broadening by background
radiation fields [26], this relationship remains relatively
unexplored.
In this work, we demonstrate that we can approximate

line broadening in the far wings of the lines with the
electron-photon cross section. The formalism developed
for electron broadening is easily extended to the case of
broadening by radiation. This allows us to give an expres-
sion for broadening due to photons, which can be approxi-
mated by the two-photon cross section in the line wings.
This treatment suggests a new perspective on opacity that
may allow improved calculations in spectral regions away
from absorption lines, which are highly relevant to stellar
modeling.
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We begin by considering line broadening by collisions
and its relationship to the second-order electron-photon
process. The overall line shape is due to both the electrons
and ions. It is often assumed that the ions can be treated
statically, while the electrons make both a static and
dynamic contribution. The line shape can then be written
as [27,28]

IðωÞ ¼
Z

dFWðFÞJðω;FÞ; ð1Þ

with

Jðω;FÞ ¼ −
1

π
Im

X
a;b;c;d

hbjϵ · rjaihcjϵ · rjdi

× habj½Δω − r · F=ℏ − ϕðωÞ�−1ρjcdi: ð2Þ

Here, F represents the static microfield, which introduces a
line shift. This becomes a line broadening due to integration
over the statistical distribution, WðFÞ. Since this work is
concerned with broadening by electron collisions, we can
neglect F for brevity without loss of generality. The sum
runs over the atomic states, both bound and continuum.
The density operator ρ gives the statistical populations of
these states. Notably, this expression does not necessarily
reduce to a form that would be bound by the f-sum
rule.
In order to make a comprehensive comparison with the

second-order electron-photon process, it is necessary to
start with a general form for the broadening operator ϕðωÞ,
where the matrix elements are given by [29]

ϕab;cdðωÞ¼
1

ℏ2

Z
dk

ð2πÞ3
Z

∞

−∞

dΩ
2π

Sðk;ΩÞ

×

�X
e

δbd
VaeðkÞVecð−kÞ
Δωeb−Ωþ iη

ρeρ
−1
c þ

X
e

δac
Vdeð−kÞVebðkÞ
Δωae−Ωþ iη

−VacðkÞVdbð−kÞ
�

1

Δωcb−Ωþ iη
þ ρaρ

−1
c

Δωad−Ωþ iη

��
: ð3Þ

We define ω such that positive values correspond to
absorption. The frequency detuning is then defined as
Δωab ¼ ðωb − ωaÞ − ω. VijðkÞ ¼ hijVðkÞjji are the
matrix elements of the electron-radiator interaction [30].
The dynamic structure factor of the plasma electrons
Sðk;ΩÞ encompasses much of the physics of the collisions,
which can alternatively be thought of in terms of absorption
or emission of plasmons.
We first consider the case where we are far from the line

center. Making an expansion of Eq. (2) in orders of ϕ=Δω,
we obtain [25,28]

JðωÞ ¼ −
1

π
Im

X
a;b;c;d

hbjðϵ · rÞjaihcjðϵ · rÞjdi

× habj
�

1

Δω
þ 1

Δω
ϕðωÞ 1

Δω
−OðΔω−3Þ

�
ρjcdi:

ð4Þ

Introducing Eq. (3), the lowest order contribution in this
expansion is then given by

JðωÞ ≈ −
1

π

X
a;b;c;d

hbjðϵ · rÞjaihcjðϵ · rÞjdi Imϕab;cdðωÞ
ΔωabΔωcd

≈
1

ℏ2

Z
dk

ð2πÞ3
X

a;b;c;d;e

�

dbadcbVaeðkÞVecð−kÞ
ΔωabΔωcb

Sðk;ΔωebÞρe

þ dbcdcdVdeð−kÞVebðkÞ
ΔωcbΔωcd

Sðk;ΔωceÞρc

−
dbadcdVacðkÞVdbð−kÞ

ΔωabΔωcd
Sðk;ΔωcbÞρc

−
dbadcdVacð−kÞVdbðkÞ

ΔωabΔωcd
Sðk;ΔωadÞρa

�
; ð5Þ

where we have abbreviated the dipole matrix elements
according to dij ¼ hijε · rjji. We now compare this with
the rate for an electron-photon transition, calculated using
second-order perturbation theory [31,32]:

weγ ¼
2π

ℏ

Z
dk

ð2πÞ3 Sðk;ωeÞπe2E2
0ðωγÞ

×

����
X

n

hfjϵ · rjnihnjVðkÞjii
En − Ei − ℏωe

þ ðe ↔ γÞ
����
2

× δðEf − Ei − ℏωe − ℏωγÞ; ð6Þ

where the positions of the electron and photon are
exchanged in the second term. We can use the delta
function to express the collision energy in terms of the
frequency detuning:

ωe ¼ ðωf − ωiÞ − ωγ ¼ Δωif: ð7Þ

Now taking the total opacity due to electron-photon
transitions, and expanding the square modulus, we can
obtain a quantity corresponding to JðωÞ of Eq. (5):
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JðωÞ≈ ℏ
2π2e2E2

0ðωγÞ
X
i;f

weγρi

≈
1

ℏ2

Z
dk

ð2πÞ3
X
i;f;m;n

�
dmfdfnVniðkÞVimð−kÞ

ΔωmfΔωnf

þdimdniVmfð−kÞVfnðkÞ
ΔωimΔωin

−
dimdfnVniðkÞVmfð−kÞ

ΔωimΔωnf

−
dmfdniVimð−kÞVfnðkÞ

ΔωmfΔωin

�
Sðk;ΔωifÞρi: ð8Þ

Comparing Eqs. (5) and (8), we see that, with some
relabeling of summation variables, the two expressions
are identical. There is therefore exact equivalence between
the electron-photon process and the first term in the line
shape expansion. Thus, in the far line wings the broadened
transition can be expressed in terms of electron-photon
transitions. Closer to the line center, it will become necessary
to include further terms in the expansion. It is possible that
such terms correspond to higher-order transitions involving a
photon together with two or more electron collisions.
We can also consider line broadening by background

radiation. The broadening operator can be expressed in terms
of the Fourier transform of the electric field autocorrelation
[22]. In the radiation case, we then apply theWiener-Khinchin
theorem, which relates the autocorrelation function of the
fluctuating radiation field to the spectral energy density:

Z
∞

−∞
dteiωthEðτÞEðτ þ tÞi ¼ uðωÞ: ð9Þ

Using this relation, we can then derive a broadening operator,
analogous to Eq. (3), for broadening by background radiation:

ϕab;cd¼
1

ℏ2

Z
∞

−∞

dΩ
2π

2πe2uðΩÞ

×

�X
e

δbd
daedec

Δωeb−Ω− iη
ρeρ

−1
c þ

X
e

δac
ddedeb

Δωae−Ω− iη

−dacddb
�

1

Δωcb−Ω− iη
þ ρaρ

−1
c

Δωad−Ω− iη

��
:

ð10Þ

Substituting this into Eq. (4), just as in the collisional case,
we can obtain the two-photon rate as the lowest-order
contribution,

JðωÞ ≈ 1

ℏ2

X
i;f;m;n

�
dmfdfndnidim
ΔωmfΔωnf

þ dimdnidmfdfn
ΔωimΔωin

−
dimdfndnidmf

ΔωimΔωnf
−
dmfdnidimdfn
ΔωmfΔωin

�
2πe2uðΔωifÞρi:

ð11Þ

Subsequent terms in the expansion possibly correspond to
higher-order multiphoton processes. With an appropriate
definition of the energy density uðωÞ, the expansion includes
not only stimulated two-photon processes but also processes
incorporating spontaneous emission.
In principle then, a sufficiently general treatment of the

line broadening would already include opacity due to
second-order processes. This is the case even for sec-
ond-order transitions with no directly intermediate state,
such as the 1s − 2s case. The second-order opacity here
arises from the far line wings of the 1s − 2p (and higher
np) line, which extend into the energy range between 1s
and 2s. Such transitions had previously been thought of as a
“pure” two-photon contribution, with no equivalent in one-
photon approaches [33].
In practice, however, the general broadening operators

given in Eqs. (3) and (10) are computationally intractable.
As a result, conventional approaches to opacity calculations
depend on approximations that are valid close to the line
center [34]. In the isolated line limit, which requires Δω →
0 for only the line in question [35], the line shape has the
familiar Lorentzian form

JðωÞ ¼ −
1

π

X
a;b

jdabj2
γab

Δω2
ab þ γ2ab

ρa: ð12Þ

In this form, the opacity can be constrained using the f-sum
rule. The width is given by the diagonal components of the
broadening operator [21,29]

γab ¼ Imϕab;ab

¼
�
nev
2

�
σa þ σb þ

Z
dΩjFaðΩÞ − FbðΩÞj2

��
Av
:

ð13Þ

Here, F are the contributions due to elastic collisions. The
Δω → 0 limit may be relaxed somewhat for this contri-
bution, for example using the approach of Lee [23]. The σ
are the inelastic contribution, due to collisional and
radiative rates. In particular, this includes the rate of
spontaneous radiative emission, which leads to what is
often referred to as the “natural” width of the state. This
interpretation only holds in the line center. In the line
wings, the concept of natural width should give way to two-
photon transitions involving spontaneous emission.
To summarize, the most general theory for line broad-

ening is not constrained by the f-sum rule. However, the
approximation commonly used in opacity calculations
[Eq. (12)] preserves the f-sum rule. We can improve upon
this by including off-diagonal terms of the broadening
operator that are not included in Eq. (12). These off-
diagonal terms can arise either from collisions with plasma
electrons or from a second photon. In our treatment, we
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approximate these off-diagonal terms with the electron-
photon and two-photon cross sections [Eqs. (8) and (11)].
Employing this approximation in the line wings opens up

the possibility for a new approach to opacity calculations
based on two-photon and electron-photon processes. This
approach would be most accurate in the regions between
lines. Since these regions contribute strongly to the
Rosseland mean opacity, this new approach would be
particularly suited to opacity calculations for radiative
transport.
As a first step toward carrying out opacity calculations in

a second-order picture, we can determine the relative
importance of electron-photon and two-photon processes.
If both collisions and radiation are treated in the dipole
approximation, then, by comparing Eqs. (8) and (11), the
ratio of the two processes can be written simply as a
function of the detuning:

weγ

wγγ
¼

Z
dk

ð2πÞ3 k
2

�
4πe2

k2

�
2

Sðk;ωÞ(2πe2uðωÞ)−1: ð14Þ

This expression has been evaluated for typical solar
conditions in Fig. 1. We find that the electron-photon
process dominates over the two-photon process for mod-
erate detuning (≲100 eV). This is consistent with calcu-
lations suggesting negligible two-photon contributions in
the 6–10 Å range [19]. As a result, we focus initially on the
electron-photon process. However, the two-photon process
should become the more important for larger detuning, for
example between the K and L shells of heavier elements.
A preliminary calculation of the opacity of neonlike iron

under solar conditions is shown in Fig. 2 (see Supplemental
Material for technical details [37]). The opacity calculated
using the electron-photon approximation is compared with
an equivalent calculation using the conventional,
Lorentzian broadening. For the range shown, the opacity
is dominated by L-shell bound-bound opacity. Where it is
valid (i.e., in the regions between the lines), the electron-
photon approach leads to an increase in opacity of up to

200%. Since radiation transport in hot, dense matter is
dominated by these spectral regions, this suggests that the
electron-photon approach could have significant impact on
opacity calculations for radiation transport applications.
This result is also promising with respect to recent

disagreements between theory and experiment [11].
However, the present preliminary calculation includes only
a single charge state. Reaching a firm conclusion in this
regard would require an electron-photon opacity calcula-
tion on a par with state-of-the-art conventional codes,
incorporating a full distribution of charge states and excited
states.
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