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Nonlinear interactions between light waves can exchange energy, linear momentum, and angular
momentum. The direction of energy flow between frequency components is usually determined by the
conventional phase-matching condition related to the linear momentum. However, the transfer law of
orbital angular momentum (OAM) during frequency conversion remains to be elucidated. Here, we
demonstrate experimentally that OAM transfer depends strongly on the phase-matching condition defined
by both linear and orbital angular momenta. Under different phase-matching configurations, the second-
harmonic wave exhibits variable OAM spectral characteristics such as the presence of just a single value or
of odd orders only. Our results pave the way toward unveiling the underlying mechanism of nonlinear
conversion of OAM states.
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The conservations of energy, linear momentum, and
angular momentum are fundamental laws describing the
propagation and interaction of waves in physics. In non-
linear optics, the phase-matching condition, or linear
momentum conservation, allows a net positive energy flow
from the fundamental wave to harmonic waves [1,2]. When
light beams possessing phase singularities, i.e., vortex
beams, are involved in nonlinear light-matter interactions,
the transfer of orbital angular momentum (OAM) between
the interacting waves must also be taken into account. A
vortex beam is characterized by a spiral phase front of
expð−ilθÞ, where l is the topological charge (TC) and θ is
the azimuthal angle. Such beams carry an OAM of lℏ per
photon, and the Laguerre-Gaussian (LG) laser modes are
the typical example [3]. In the past three decades, OAM has
become established as an important degree of freedom in
the control of light beams, and it has found a wide range of
applications, including imaging, optical manipulation,
high-precision optical measurement, various areas of quan-
tum science, and optical communications [4–6]. Nonlinear
generation and conversion of OAM states are of particular
interest. On the one hand, through frequency conversion,
vortex beams with on-demand wavelength and TC, which
are not readily available using traditional methods, can
be obtained [7–10]. On the other hand, links between
physical systems with different operating wavelengths can
be established via nonlinear frequency conversions.
Examples include the creation of an entanglement link
between different quantum systems operating in a photon’s
OAM degrees of freedom [11] and the enabling of

up-conversion detection or imaging from the infrared to
the visible [12,13]. In parametric processes, the OAM is
generally conserved; for example, in sum frequency gen-
eration, the OAM of the generated harmonic wave equals to
the sum of the OAM carried by the input two fundamental
waves (FWs) [14,15]. With regard to the OAM transfer law,
in their seminal work on second harmonic generation
(SHG) of LG modes, Dholakia et al. [16] and Courtial
et al. [17] attributed it to be the conventional phase-
matching condition; however, they considered only the
linear momenta of the interacting waves. In the present
work, we demonstrate experimentally that the OAM trans-
fer in nonlinear frequency conversions depends strongly on
the phase-matching condition, which is defined by both the
linear and orbital angular momenta.
Here, we take typical SHG as an example, and the

nonlinear material is a 1D periodically poled crystal. In
periodically poled crystals, there is a periodic alternation of
the ferroelectric domains of opposite spontaneous polari-
zation. The nth-order reciprocal vector provided by the
periodically poled structure can be written as Gn ¼ 2πn=Λ,
where Λ is the poling period. The width and length of the
crystal are L1 and L2, respectively. A general SHG of a
vortex beam in the nonlinear crystal is shown schematically
in Fig. 1(a), and the wave vector mismatch between the
interacting waves in the y direction is

dky ¼ −2k1y −Gn sin θ þ k2y0 cos α − k2r0 cosϕ0 sin α ;

ð1Þ
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where k2y0 and k2r0 are the wave vector components of the
second harmonic (SH) wave, which are related to the linear
and orbital angular momentum, respectively, and k1y is the
wave vector component of the FW related to the linear
momentum. r0 and ϕ0 are the radius and azimuthal angle in
the x0-z plane, respectively. Inside the nonlinear crystal, the
angle between the FW and the domain wall is θ, while the
angle between the SH wave and the FW is α.
In domain-engineered ferroelectric crystals, there are

several well-established SHG phase-matching diagrams
[Fig. 1(b)], which have been widely exploited for gener-
ation of new laser light sources and demonstration of novel
optical effects, as well as nonlinear beam shaping [18–27].
The phase mismatches in these phase-matching diagrams
are defined using the plane-wave approximation, in which
only linear momenta are considered. Thus, we define
two parameters to describe the phase mismatches, Δkx ≡−Gn cos θ þ k2y0 sin α and Δky ≡−2k1y −Gn sin θþ
k2y0 cos α, which are related to the linear momenta and
the reciprocal vectors provided by the spatially modulated
crystals. For SHG of vortex beams, the two parameters are
approximately constant when the transverse wave vectors
are small. When the interacting waves are both perpen-
dicular to the ferroelectric domain walls [i.e., θ ¼ 90° and
α ¼ 0° in Fig. 1(a)], this gives the well-known collinear
quasi-phase-matched SHG [18]. Nonlinear Bragg diffrac-
tion [19] occurs when the longitudinal and transverse
phase-matching conditions are both fulfilled, i.e., Δkx ¼
Δky ¼ 0. Nonlinear Raman-Nath diffraction [20,26,27]
corresponds to another special type of noncollinear phase-
matching diagram in which the transverse component is

phase matched (Δkx ¼ 0), while the longitudinal direction
is phase mismatched (Δky ≠ 0). In the experiment, one can
rotate the nonlinear crystal around the z axis to switch the
phase-matching diagrams. In addition, the phase mismatch
can be tuned by changing the working temperature, as well
as choosing the diffraction orders. Thus, periodically poled
crystals provide a flexible platform to investigate the
characteristics as well as to gain insight into the underlying
physics for frequency conversion of such light beams.
The nonlinear wave equation governing the SHG process

can be solved using the Green-function formalism [28], and
the generated SH at 2ω in the far field can be regarded as
the Fourier transform of the FW from real space to
reciprocal space. If we assume that the FW is in the form
of an lth-order LG mode with radial index zero, and make
the small-angle approximation sin2α ≈ 0 (α < 15°), then
the SH field for the several aforementioned phase-matching
diagrams can be written as the following unified form (see
Supplemental Material, Sec. I for details [29]):

Eð2ωÞ ∝ L sinc½ðΔkyL − Lk2r0 sin α cosϕ0Þ=2�uðk2r0Þei2lϕ0
;

ð2Þ

with

uðk2r0 Þ ¼ ðw0k2r0 Þ2jlj1F1½1þ 2jlj; 1þ 2jlj;−ðw0k2r0 Þ2=8�
ð3Þ

in which 1F1ða; b; zÞ is the confluent hypergeometric
function [31]. w0 is the beam waist of the FW. L ¼
L1= cos θ is the interaction length of the noncollinear
SHG process in the nonlinear crystal, while L ¼ L2 for
the collinear case. From Eq. (2) we can see that the electric
field of the SH wave is determined by the phase-matching
condition defined by both the linear momentum and OAM.
The intensity distribution of the SH wave has a ring-shaped
envelope uðk2r0 Þ and is modulated by the sinc function.
There is a spiral phase term ei2lϕ

0
in the electric field

distribution of the SH wave, where the index is twice that of
the FW. Moreover, the azimuth-dependent phase mismatch
in the sinc function will affect the angular phase and
intensity distribution of the SH wave, and by decomposing
the sinc function in terms of spiral harmonics e−imϕ0

(where
m is an integer), OAM sidebands around the center number
2l will be generated on the SH wave.
For collinear SHG, where θ ¼ π=2 and α ¼ 0, the profile

of the SH wave can be expressed as

Eð2ωÞðk2r0 ;ϕ0Þ ∝ L2sinc½ð2k1y þ Gn − k2y0 ÞL2=2�
× uðk2r0 Þei2lϕ0 ð4Þ

In Eq. (4), the phase-mismatch term in the sinc function
is independent of the azimuthal angle ϕ0, and the only term

FIG. 1. (a) Schematic of a general SHG process in a periodi-
cally poled crystal (nonlinear grating). The arrows represent the
directions of the spontaneous polarization. For θ ¼ 90° and
α ¼ 0°, this is the collinear SHG. (b) Phase-matching configu-
rations for collinear SHG [18], nonlinear Bragg diffraction [19],
and nonlinear Raman-Nath diffraction [20].
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containing ϕ0 is the spiral phase term ei2lϕ
0
. Choosing an

OAM basis hmj, we can evaluate the probability amplitude
of each OAM component:

aðmÞ ¼ hmjEð2ωÞi
∝ L2sinc½ð2k1y þ Gn − k2y0 ÞL2=2�2πδm;2l

×
Z þ∞

0

uðk2r0 Þk2r0dk2r0 : ð5Þ

In Eq. (5), the inner product is nonzero only when
m ¼ 2l, which indicates that the SH wave has a single
OAM value which is twice that of the FW. In addition,
the longitudinal wave vector mismatch only influences
the SHG efficiency, and it does not affect the OAM
distribution in collinear SHGs. Our experimental results
on quasi-phase-matched and mismatched collinear SHG of
vortex beams are consistent with previous reports. See
Supplemental Material, Secs. 2 and 3 for details [29].
An experiment on SHG of vortex beams in a Bragg

diffraction configuration was carried out in a periodically
poled KTP (PPKTP) with a poling period of 10.125 μm
(see Supplemental Material, Sec. IV for details [29]), and
several orders of nonlinear Bragg diffractions could be
obtained by rotating the crystal around the z axis. The
recorded profiles of the SH waves are shown in Fig. 2. We
can see that the intensity profiles of the SH waves from the
nonlinear Bragg diffraction have an intensity null in the
beam center, just as predicted. Because Δky ¼ 0, vertical
dark stripes appear at the zeros of the modulating function
sincð−Lk2r0 sin α cosϕ0=2Þ in Eq. (2), where the

destructive interference of the SH occurs when the phase
difference accumulated by the longitudinal phase mismatch
reaches a nonzero integer multiple of π. As the noncollinear
angle α increases, the maximum value of the phase term in
the sinc function will increase correspondingly, and thus
the first-order dark stripe will move toward the center of the
SH spot and more dark stripes will appear. We studied the
third-, fifth-, and the sixth-order nonlinear Bragg diffrac-
tions when the TC of the FW was l ¼ 3; the corresponding
diffraction angles were 4.71°, 7.97°, and 9.86°, respectively.
The first and second columns in Fig. 2 give the theoretical
and measured intensity profiles of the SH waves with
different diffraction angles, which were consistent with the
above analysis.
The weight of each OAM components of the SH wave

from nonlinear Bragg diffraction can be written as

aðmÞ ∝
Z þ∞

0

Z
2π

0

sincðc cosϕ0Þeið2l−mÞϕ0
dϕ0uðk2r0 Þ

× k2r0dk2r0 ; ð6Þ

in which c ¼ −Lk2r0 sin α=2. According to the Taylor
series of the sinc function, sincðc cosϕ0Þ ¼ Pþ∞

j¼0 ð−1Þj×
ðc cosϕ0Þ2jþ1=ð2jþ 1Þ!, we can obtain a nontrivial sol-
ution only if m-2l is even. This means that only even-order
spiral harmonics will contribute to the OAM spectrum, as
can be seen clearly from the OAM spectra of the SH waves
in the last column of Fig. 2. In nonlinear Bragg diffraction,
the SH field distributions still have a high degree of
symmetry, being symmetrical about the vertical and hori-
zontal axes. The OAM distribution, concentrating on the
even-order components while missing the odd-order com-
ponents, reflects the symmetry of the SH fields. With
increasing diffraction angle α, the weights of the high-order
terms in the series expansion become larger, and thus the
probability of the central OAM component decreases while
the probabilities of the neighboring even-order components
increase.
When the temperature of the nonlinear crystal was tuned

off the phase-matching temperature point, the parameter
Δkx remained zero, while Δky became nonzero. In this
case, the phase-matching diagram can be looked upon as
the nonlinear Raman-Nath diffraction. In the experiment,
the temperature of the nonlinear crystal was changed from
70 °C to 110 °C in steps of 10 °C, and the values of Δky at
each temperature point are listed in Table I. The intensity

FIG. 2. Intensity profiles and OAM spectra of SH waves from
(a) third-, (b) fifth-, and (c) sixth-order nonlinear Bragg dif-
fraction with the TC of the FW being l ¼ 3. The corresponding
diffraction angles are 4.71°, 7.97°, and 9.86° respectively.

TABLE I. Phase-mismatch term Δky at different temperatures
for Raman-Nath diffractions.

Temperature of nonlinear crystal (°C)

70.0 80.0 90.0 100.0 110.0
Δky (μm−1) −0.0028 −0.0014 0.0 0.0015 0.0030
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profiles together with the OAM spectra from the third-order
Raman-Nath diffraction are shown in Fig. 3. In contrast to
the case of nonlinear Bragg diffraction, the field distribu-
tion of the SH wave from Raman-Nath diffraction is not
symmetric about the vertical axis. With a different sign of
the phase mismatch Δky, the dark stripe appeared on a
different side of the beam center. Moreover, the dark stripe
moved toward the spot center with increasing Δky. Owing
to the nonzero Δky, which is independent of the azimuthal
angle ϕ0, the series expansion of the function sinc½ðΔkyL −
Lk2r0 sin α cosϕ0Þ=2� contains both even and odd terms,
which can be seen from the calculated and measured OAM
spectra in Fig. 3.
To obtain more pronounced Raman-Nath diffraction of

vortex beams, we used another piece of PPKTP crystal with
a poling period of 2.55 μm to introduce larger phase
mismatches Δky. The FW with a TC of 1 was incident

on the nonlinear crystal along the direction parallel to the
ferroelectric domain wall, and the first- and second-order
SH Raman-Nath diffractions could be observed, the cor-
responding diffraction angles being 6.14° and 12.69°,
respectively. Because of the large diffraction angles,
as well as the large phase mismatches (0.5386 and
0.1235 μm−1), multiple dark stripes appeared in the SH
intensity profiles, as shown in Fig. 4. Moreover, odd- and
even-order components dominated, respectively, with
different diffraction orders, which differed from the situ-
ation with small phase mismatches. This can be
qualitatively analyzed as follows. Because Δky ≫
k2r0 sin α cosϕ0, the sinc function is approximately equal
to 2 sinðΔkyL=2þ c cosϕ0Þ=ðΔkyLÞ, which can be sim-
plified to 2 sinðc cosϕ0Þ=ðΔkyLÞ or 2 cosðc cosϕ0Þ=
ðΔkyLÞ when the phase accumulated by ΔkyL=2
approaches even or odd multiples of π=2. Thus, the
OAM components are determined by the coefficients in
the series expansion of the sine or cosine function,
respectively. See Supplemental Material, Sec. V for a
detailed analysis [29].
In conclusion, we have demonstrated that OAM transfer

in frequency conversions is dictated by the phase-matching
condition defined by both the linear and orbital angular
momenta. Several phase-matching diagrams, such as col-
linear SHG, nonlinear Bragg diffraction, and nonlinear
Raman-Nath diffraction have been exploited in periodically
poled crystals to tune the phase-matching condition
imposed on SHG of vortex beams. The OAM spectrum
is determined by the longitudinal phase mismatch, or more
specifically by the spiral harmonics provided by the phase-
mismatch term. If the longitudinal phase mismatch is
totally independent of the azimuthal angle, then the SH
wave will carry a single OAM which is twice that of the
FW. There exist only even-order OAM components when
the longitudinal phase mismatch contains a single term that

FIG. 3. Intensity profiles and OAM spectra of SH waves with
different phase mismatch Δky. For comparison, nonlinear Bragg
diffraction with Δky ¼ 0.0 is shown in (c), and cases of nonlinear
Raman-Nath diffraction are shown in (a), (b), (d), and (e). The TC
of the FW is l ¼ 3.

FIG. 4. Intensity profiles and OAM spectra of SH waves for
(a) first- and (b) second-order Raman-Nath diffraction from a
short-pitched PPKTP; the corresponding phase mismatches Δky
are shown in each panel. The TC of the FW is l ¼ 1.
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is dependent of the azimuthal angle. An OAM spectrum
with index covering the full integer range is obtained when
both the azimuth-dependent and azimuth-independent
terms are included. The results presented here can help
in understanding the OAM transfer mechanism in nonlinear
frequency conversions. Moreover, our work can open an
avenue to flexible tailoring of the OAM spectrum at desired
wavelengths, which has important potential applications
such as OAM mode multicasting in optical communica-
tions and high-dimensional spatial mode entanglement in
quantum information technology.
Small-angle approximation was used to give explicit

expressions of the OAM spectrum, however, the theoretical
treatment developed in this paper is also applicable for the
situations with large noncollinear angles, as well as for
investigation of frequency conversion of structured lights.
In this work, we experimentally demonstrate the phase-
matching controlled nonlinear OAM conversion in peri-
odically poled crystals. The physical mechanism can be
further applied to other nonlinear platforms such as non-
linear metasurface [34]. Interestingly, lithium niobate thin
film emerges recently as a promising platform to utilize the
advantages of both metasurface and periodically poled
crystal, which may provide flexible phase matching con-
figuration for nonlinear manipulation of OAM states.
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