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Nonreciprocal Optomechanical Entanglement against Backscattering Losses
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We propose how to achieve nonreciprocal quantum entanglement of light and motion and reveal its
counterintuitive robustness against random losses. We find that by splitting the counterpropagating lights of
a spinning resonator via the Sagnac effect, photons and phonons can be entangled strongly in a chosen
direction but fully uncorrelated in the other. This makes it possible both to realize quantum nonreciprocity
even in the absence of any classical nonreciprocity and also to achieve significant entanglement revival
against backscattering losses in practical devices. Our work provides a way to protect and engineer
quantum resources by utilizing diverse nonreciprocal devices, for building noise-tolerant quantum
processors, realizing chiral networks, and backaction-immune quantum sensors.
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Nonreciprocal physics has witnessed rapid advances in
recent years, with unique applications ranging from back-
action-immune signal transfer or processing, chiral net-
working, and invisible sensing [1]. By breaking the Lorentz
reciprocity, one-way flow of classical information, i.e.,
mean photon numbers, has been realized by using atoms
[2,3], solid devices [4—12], and synthetic materials [13—19].
Likewise, quantum optical diode or one-way flow of
quantum information can also be achieved. In fact, non-
reciprocal control of single photons and their quantum
fluctuations have been demonstrated, such as single-photon
diodes [20,21] or circulators [22], and one-way photon
blockade [23,24], providing key tools for chiral quantum
engineering [25-28]. However, up to now, the possibilities
of switching a single nonreciprocal device between
classical and quantum regimes, as well as protecting
quantum entanglement with nonreciprocal devices, have
not yet been revealed.

Here we propose how to achieve nonreciprocal quantum
entanglement in cavity optomechanics (COM), revealing
its unique properties which are otherwise unattainable in
conventional devices. COM devices featuring coherent
light-motion coupling [29,30] have been widely used for
quantum control of massive objects [31-36], particularly
COM entanglement [37-45] or COM sensors [46—48].
Very recently, quantum correlations at room temperature
were observed even between light and 40 kg mirrors [49].
Here we show that COM entanglement can be manipulated
in a highly asymmetric way and the resulting nonreciprocal
entanglement has the counterintuitive ability to preserve its
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optimal quality in a chosen direction against losses. This
gives a new way to engineer quantum resources by utilizing
diverse nonreciprocal devices, without the need of any
topological or dissipative structure. In a broader view,
our findings shed new light on the marriage of nonrecip-
rocal physics and quantum technology, which can benefit
such a wide range of applications as noise-tolerant quantum
processing [50,51], chiral quantum networking [25-28,52],
and backaction-immune quantum sensing [53-55].

As shown in Fig. 1, we consider a spinning COM
resonator evanescently coupled with a tapered fiber. In a
recent experiment [15], nonreciprocal propagation of light
with 99.6% isolation was demonstrated by using such a
spinning device. The optical paths of counterpropagating
lights in the resonator are different due to the rotation,
resulting in an irreversible refractive index for the clock-
wise (CW) and counterclockwise (CCW) modes [15]; i.e.,
N = n[l £nRQ(n=2 —1)/c|, where n is the refractive
index of the material, Q is the angular velocity of the
resonator with radius R, and c¢ is the speed of light in the
vacuum. Correspondingly, the resonance frequencies of the
counterpropagating modes experience an opposite Sagnac-
Fizeau shift; i.e., w, — w, + Ap, with [56]

R 1 ad
Ap = +Q M <1——’1"), (1)
C

where @, is the resonance frequency for a stationary
resonator, and A is the light wavelength in vacuum. The
dispersion term dn/dA, characterizing the relativistic origin
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FIG.1. Nonreciprocal optomechanical entanglement in a spinning resonator. (a) Frequency spectrum of the spinning COM system. By

fixing the CW rotation of the resonator, we have Ap > 0 (A < 0) for the case by driving the CCW (CW) mode. Besides, the resonator
can support a radiation-pressure-induced mechanical radial breathing mode. The CW and CCW modes are coupled via backscattering
with the strength J. (b) The Sagnac-Fizeau shift Ay versus the angular velocity €. Increasing the angular velocity results in a linear
opposite frequency shift for the counterpropagating modes. For the same input light, due to the opposite frequency shift for the
counterpropagating modes, COM entanglement can appear unidirectionally. See the text for more details.

of the Sagnac effect, is small in typical materials (up to
~1%) [15,56]. By spinning the resonator along the CW
direction, we have Ap > 0 or Ap < 0 for the case with
the driving laser on the left- or right-hand side, and the
corresponding effective optical frequencies are w; = w,
|Ap| (j = O, D), respectively. In addition, the resonator
can support a mechanical breathing mode with frequency
w,y,. In a rotating frame with respect to H, = hwl(&gé@—i—

dy,dy,), the Hamiltonian of this spinning COM system,
with the driving laser on the left-hand side, is this:

N ~ hw,, , R T A A
H="H + T(P2 +¢%) = hGy(dg,dg, + disds)d,
H.= ) hAdla; + hi(ahas + dlyay)
j=0.0

+ ihe(aly — dy), ()

where d; (dj.) is the optical annihilation (creation) operator,
A; = w; — w;, and g (p) is the dimensionless mechanical
displacement (momentum) operator. The frame rotating
with driving frequency @, is obtained by applying the
unitary transformation U = exp[iHyt/h] (see, e.g.,
Ref. [29]). The field amplitude of the driving laser is
le| = \/W, where P and « are the input laser power

and the optical decay rate, respectively. Gy = (w./R) X

\/h/mw,, denotes the single-photon COM coupling rate
[29], with m the mass of the resonator. Also, imperfec-
tions of devices, such as surface roughness or material
defect, can cause optical backscattering, as described by
the mode-coupling strength J. In a recent experiment,
by breaking the time-reversal symmetry with Brillouin
devices, dynamical suppression of the backscattering was
already observed [57].

Quantum Langevin equations of this spinning COM
system then read:

dy = —(iAg +K)dy — iJag, + iGodnq + € + V2ka,
gy, = —(ig, + K)dg, — iJdg + iGode,§ + V2KaE,

g = wup,

P =—wud = ymb + Golahdy, + dlyds) + &, 3)

where y,, is the mechanical damping rate, and dij“ (f) is the
zero-mean input noise operator for the optical (mechanical)
mode, characterized by the following correlation functions
[58]:

(E(NE) = rn2ny + 1)8(t = 1), for @, /7, > 1,

4)

where n,, = [exp(hw,,/kgT) — 1]~ denotes the thermal
phonon number, kj is the Boltzmann constant, and T is the
bath temperature. Under the condition of strong optical
driving, we can linearize the dynamics by expanding each
operator as a sum of its steady-state value and a small
fluctuation around it, ie., d; =a; +4dd;, § = q,+ 64,
p = ps + 6p. By defining the vectors of quadrature fluc-
tuations and input noises as u(r) = (6X, Yy, 6X o),
6Y,64.5p), o7 (1) = (V2xXS, V2P, /2R, /2P,

0, f) with the components:

A

1 A ES
_ At 4 64 = i, —dd
5X/_ﬁ(5”/+5aj)’ 5Yj—\/§(5aj—5aj),
- 1 Ain i (i i Ainf A
X =g +ap. =@ -a. 6
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we obtain a compact form of the linearized equations of
quantum fluctuations: () = Au(t) + v(z), where

-« Ay 0 J -Gy O
Ay -« -J 0 Gy 0
0 J -k A, -G, 0
-J 0 -A, —x Gy O
0 0 0 0 0 9w,
Gy Gy Gy

G%) Wy ~Vm

and Aj = A; = Gyq, is the effective optical detuning,
Gj (G;’) is the real (imaginary) part of the effective
(G; =V2Gya; = G} +iG}), and
the steady-state mean values of the dynamical variables
are given by

COM coupling rate

(iAg, +K)e
(iAy + x)(iAy +K) + I

—iJ
Qpy = —=——
© 7 (iRy, +x)

Ay,

Go 2 2
s — + s
4 = 2> (la | + lasP)

m

ps =0. (7)

The solution of the linearized Langevin equations is
given by u(t) = M(1)u(0) + [{deM(z)v(t —7), where
M(t) = exp(At). The system is stable and reaches its
steady state when all real parts of the eigenvalues of A are
negative, as characterized by the Routh-Hurwitz criterion
[59,60]. When the stability condition is fulfilled, we have
M(0) = 0 in the steady state and

(o) = [Ta Mu@uti -2 ®
k

0

Due to the linearized dynamics and the Gaussian nature
of the quantum noises, the steady state of the system,
independently of any initial conditions, finally evolves into
a tripartite zero-mean Gaussian state, which is fully
characterized by a 6 x 6 correlation matrix V, with its
components

Vi = (ur(o0)u;(00) 4 uj(00)uy(00)) /2. (9)
By substituting Eq. (8) into Eq. (9) and using the fact that

the six components of v(¢) are uncorrelated, the steady-
state correlation matrix V is obtained as

V= /O dtM(t) DM (), (10)

where D = Diag[k, k, k,k,0,7,,(2n,, + 1)] is the diffusion
matrix, defined through (v (7)v,(7") + v;(7')vi(2))/2 =
Dy,;6(7 — 7). Under the stability condition, the steady-state
correlation matrix V fulfills the Lyapunov equation [37]:

AV + VAT = -D. (11)
This linear Eq. (11) allows us to find V for any values of the

relevant parameters. To quantify the entanglement between
the mechanical mode and the driven optical mode, we adopt
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FIG. 2. Nonreciprocal COM entanglement without backscatter-
ing. (a) Ey versus A./w,, for different input directions. For
Ar =0, COM entanglement exists around the resonance
A./w, ~1. The spectral offset is due to the COM-induced
redshift of the cavity mode. For A # 0, the resonance conditions
for the countercirculating modes are modified by the opposite
Sagnac shifts, resulting in the peaks symmetrically shifted for the
opposite input directions. (b)—(c) Tunable quantum nonreciproc-
ity versus classical nonreciprocity. For A_./w,, ~ 0.27, quantum
nonreciprocity exists even when Ny = N, (without classical
nonreciprocity); in contrast, for A./®,, ~ 1, classical nonreci-
procity appears for E,r y = Ejrg,. The parameters are chosen as
Q =8kHz, J =0, and P =20 mW.
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the logarithmic negativity, £, as a bipartite entanglement
measure for continuous variables [68]

E ) = max[0, —In(2v7)], (12)
where v~ = 271/2{Z(V') = [Z(V")? — 4det V']'/2}1/2 with
2(V') = det A + det B — 2 detC, is the smallest eigenvalue
of the partial transpose of the reduced correlation matrix V’.

By tracing out the reflected mode in V and writing it in a
2 x 2 block form, we have

Vi < A C )

cr B)

V' preserves the Gaussian nature, and entanglement

emerges in its corresponding subsystem if and only if

v~ < 1/2, which is equivalent to Simon’s necessary and

sufficient entanglement criterion (or the related Peres-

Horodecki criterion) for certifying entanglement of two-
mode system in Gaussian states [69].

In our calculations, for ensuring the stability of the
system, we use the experimentally feasible values [15,70]:
n=148, m=10ng, R=1.1mm, 1 =155 um, Q =
w./k =32x10", w, =63 MHz, y,, =52kHz, T=
130 mK, and Q = 8 kHz or 23 kHz. We first consider

(13)

the case without backscattering, i.e., J = 0. In Fig. 2, we
plot the logarithmic negativity E, ; and the intracavity
photon number N; = |a;|? of the driven mode, as a function
of the detuning A, = w, — w;. Here j denotes the driving
direction. For a stationary resonator, Ey ; is independent
on the driving direction, while for a spinning one, it
becomes different by reversing the direction. For example,
Figs. 2(a) and 2(b) show that, when the maximal COM
entanglement is created by driving from one side, no
entanglement occurs by driving it from the other side. The
underlying physics can be understood as follows.
In COM, the driving laser is scattered by the mechanical
mode into the Stokes and anti-Stokes sidebands. When
the cavity mode is resonant with one of the sidebands,
COM correlations are created, as shown in experiments
[40,41]. Now, by spinning the resonator, nonreciprocity
emerges for the created COM entanglement, which is
fundamentally different from classical nonreciprocity of
mean photon numbers. In fact, as shown in Figs. 2(b)
and 2(c), nonreciprocal COM entanglement exists even
without any classical nonreciprocity; in contrast, for
A./w,, ~ 1, significant classical nonreciprocity appears
for Eyr y ~ Ex 0. Hence it is possible to switch a single
nonreciprocal device between classical and quantum
regimes. We note that one-way quantum control of photon
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FIG. 3.

Entanglement-revival factor

A w,

A Jw,y,

J/ K

Suppression of COM entanglement due to random-defect-induced backscattering, and its nonreciprocal revival resulting from

the rotation-induced compensation. (a),(b) The logarithmic negativity £, and (c),(d) the effective COM coupling |G,|/w,, are plotted as
a function of the scaled optical detuning A, /w,,. For Q = 23 kHz, the value of E y is enhanced for ~2.5 times, reaching almost that as in
an ideal device without backscattering. (e) The effective COM coupling |G,|/w,, versus the optical detuning A, /w,, and the rotation
speed Q. (f) Density plot of the revival factor y as a function of the optical coupling strength J and the rotation speed €.
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bunching and antibunching has been observed very
recently [22,24].

More importantly, quantum nonreciprocity provides a
feasible way to protect devices against losses, which is
reminiscent of that in topological systems or chiral envi-
ronment [26,27]. Figure 3(a) shows that, in conventional
COM, E decreases for J # 0, while for a spinning device,
the maximum value of E,  is significantly enhanced,
approaching to that in an ideal device [see Fig. 3(b)].
To better understand this counterintuitive effect, we also
plot the effective COM coupling of the driven mode
|Gj| with respect to A, in Figs. 3(c)-3(e). We see that
the backscattering-induced reflection can be significantly
suppressed in a spinning device. As a result, one can
achieve nearly ideal COM entanglement, which can be
clearly shown by defining a revival factor:

~ max [En(Q#0,J #0)]
C max [Ey(Q=0,J =0)]’

X (14)

Figure 3(f) shows that the maximal factor can reach
99.1%; i.e., COM entanglement in such a nonreciprocal
device is immune to random losses. This provides a new
strategy to improve the performance of quantum devices
by harnessing the power of nonreciprocity. Also we have
confirmed that nonreciprocal entanglement can survive
even when quantum COM entanglement is fully destroyed
by thermal noises in a conventional reciprocal device (see
the Supplemental Material for more details [60]).

Finally, we remark that in experiments, COM entangle-
ment can be detected by measuring the correlation matrix V
under a proper readout choice via a filter [39—41]. The
optical quadratures can be measured via a homodyne or
heterodyne detection of the output [41-43], and the readout
of mechanical ones requires a probe being resonant with the
anti-Stokes sideband, mapping the mechanical motion to
the output field [41,44]. With the same procedure, nonre-
ciprocal features are observable also in the output field,
including transmission rates [71] and COM correlations
[40-45], detailed calculations of which will be given
elsewhere.

In summary, we have shown how to achieve quantum
nonreciprocal entanglement in a COM system, how to
switch such a single nonreciprocal device between classical
and quantum regimes, and how to keep the optimal
entanglement in a chosen direction against losses. These
findings, shedding light on the marriage of nonreciprocal
physics and quantum engineering, open up the way to
control quantum states by utilizing such diverse nonrecip-
rocal devices as in optics, atomtronics [21,22,24], elec-
tronics [72], and in acoustics [73]. In fact, quantum
nonreciprocity is achievable in systems well beyond
COM; for instance, one-way control of sub- or super-
Poissonian correlations, as predicted in an optical system
[23], was demonstrated very recently using cavity atoms

[24]. In a broader view, nonreciprocal entanglement pro-
vides an unconventional tool for tasks that cannot be
performed by classical one-way devices, such as building
noise-tolerant quantum processors [50] and achieving
directional quantum sensing [33-36] or steering multipar-
tite entanglement [74-77].
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