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The possibility of a superradiant phase transition in light-matter systems is the subject of much debate,
due to numerous apparently conflicting no-go and counter no-go theorems. Using an arbitrary-gauge
approach we show that a unique phase transition does occur in archetypal many-dipole cavity QED
systems, and that it manifests unambiguously via a macroscopic gauge-invariant polarization. We find that
the gauge choice controls the extent to which this polarization is included as part of the radiative quantum
subsystem and thereby determines the degree to which the abnormal phase is classed as superradiant. This
resolves the long-standing paradox of no-go and counter no-go theorems for superradiance, which are
shown to refer to different definitions of radiation.
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Superradiance was originally described by Dicke [1],
and since then it has received a great deal of attention (see,
e.g., Ref. [2] for a recent introduction). A superradiant
phase of a light-matter system is one in which a macro-
scopic number of photons arises due to the interaction
between many dipoles. The possibility of such a phase
transition within the Dicke model was first recognized
some time ago [3,4]. Later, seminal contributions were
made in the connection with quantum chaos [5–7]. The
topic now includes extended Dicke models [8–12], driven
and open systems, semiclassical descriptions [13–17], and
artificial QED systems [18–29].
One of the most controversial aspects of theoretical

studies has been the validity of so-called “no-go theorems,”
which prohibit a superradiant phase and are proved in the
Coulomb gauge. The original no-go theorem [30] actually
prohibits a phase transition of any kind, but neglects direct
electrostatic interactions, whose presence are a defining
feature of a correct Coulomb-gauge model. This theorem,
and variants thereof, have been both refuted and confirmed
in numerous subsequent works [11,12,18,21,25,31–41]. It
has been suggested that where natural atomic systems
admit a no-go theorem certain artificial atomic systems do
not [21] (though see also Refs. [22,42]). However, in the
multipolar-gauge the superradiant phase transition also
appears to be automatically recovered for conventional
cavity QED systems [37,38].
Further permutations of these results are available. For

example, if explicit dipole-dipole interactions that are not
naturally present are added into the multipolar-gauge
description, then a no-go theorem reemerges [19,34,43,44].
A very recent contribution [41] argues without the two-
level approximation that a superradiant phase is impossible,
but this treatment considers only the radiative quantum

subsystem and is again proved in the Coulomb gauge. If,
rather than just the radiative subsystem, one also considers
variations in the electrostatic interactions that are present
within the Coulomb gauge, then an apparently different
ferroelectric phase transition is predicted. This, however,
does not lead to superradiance [36]. Thus, despite numer-
ous contributions spanning several decades, the occurrence
and nature of the phase transition in generic many-emitter
light-matter systems, and how this relates to the choice of
gauge, are fundamental questions whose answers remain
unclear, yet still highly relevant [41,45–48].
Here we resolve these fundamental issues by proving

that a unique physical phase transition does occur in
generic many-dipole cavity QED systems and that the
abnormal phase of the system is unambiguously signaled
by a macroscopic average of the gauge-invariant transverse
polarization field PT . This equals the longitudinal electric
field EL except at the point-dipole positions themselves.
Crucial to the resolution provided is the recognition that
QED subsystems are gauge relative, meaning that each
gauge provides different gauge-invariant definitions of the
light and matter subsystems. Whether the abnormal phase
is characterized as ferroelectric or as superradiant depends
on the extent to which EL ¼ PT is included within the
radiative quantum subsystem and this is controlled by the
gauge choice. We thereby show that the different view-
points provided by different gauges are not contradictory,
but in fact equivalent, as required. In particular, correct no-
go statements such as in Ref. [41] are reconciled with
correct counter no-go statements such as in Ref. [37]. Such
results are found to be different ways of viewing the same
phenomenon in terms of physically different quantum
subsystems. By converting the apparent gauge non-
invariance of the phase transition into a proof of gauge
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invariance, our results resolve the associated long-standing
controversies.
A related but separate point is that level truncation of

material dipoles causes a breakdown of gauge invariance
[43,44,49,50]. Using numerical results for finite numbers
of dipoles we show that accurate two-level model predic-
tions can be identified. It is reasonable to conclude that the
same two-level truncation will be accurate in the thermo-
dynamic limit. Thus, arbitrary-gauge QED is also capable
of eliminating any further quantitative ambiguity resulting
from the use of material two-level truncation.
We begin by deriving an arbitrary gauge Dicke

Hamiltonian. We adopt a general formulation of QED in
which the gauge is selected by a real parameter α. We
consider N identical electric dipoles each described by a
classical center-of-mass position Rμ and a dipole moment
operator d̂μ ¼ −erμ. The dipoles interact with a common
electromagnetic field described by transverse-electric and
magnetic fields ET and B, respectively. We obtain the
Hamiltonian for the system from first principles [51],
which can be written in the gauge-invariant form [49]
H ¼ Ematter þ Efield, where Ematter ≔

P
N
μ¼1

1
2
m_r2μ þ V þ

Vdip and Efield ≔ 1
2

R
d3x½ETðxÞ2 þ BðxÞ2�. Here V denotes

the total intradipole potential, and Vdip denotes the interdi-
pole electrostatic energy. The α-dependent canonical
momenta are found to be

pμα ¼ m_rμ − eð1 − αÞAðRμÞ; ð1Þ

ΠαðxÞ ¼ −ETðxÞ − PTαðxÞ; ð2Þ

where A is the gauge-invariant transverse vector potential
such that ET ¼ − _A and PTα is the α-gauge transverse
polarization given by PTαðxÞ ¼ αPTðxÞ, with PTðxÞ ¼P

N
μ¼1 d̂μ · δTðx −RμÞ. The canonical commutation rela-

tions are ½rμ;i; pν;j� ¼ iδμνδij and ½AT;iðxÞ;ΠT;jðx0Þ� ¼
δTijðx − x0Þ. All other commutators between canonical
operators vanish. The canonical momenta of different
gauges are unitarily related via Xα ¼ Rαα0Xα0Rα0α, where
X ¼ p, Π and Rαα0 ¼ exp½iðα − α0ÞPN

μ¼1 d̂μ ·A�.
We now restrict our attention to a single cavity mode

with volume v, frequency ω and unit polarization vector ε,
described by bosonic operators aα; a

†
α with ½aα; a†α� ¼ 1.

The restriction is imposed consistently on all fields includ-
ing the transverse delta function δT . This eliminates the
need to regularize PT [54], and ensures that the transverse
commutation relation for the canonical fields is preserved.
The fundamental kinematic relations given by Eqs. (1) and
(2) are therefore also preserved. In order to obtain a Dicke
Hamiltonian we next take the limit of closely spaced
dipoles around the origin; Rμ ≈ 0 and we approximate
the dipoles as two-level systems. Further details of all
approximations used are given in Ref. [51]. We introduce
the collective operators Jiα ¼

P
N
μ¼1 σ

i
μα, with i ¼ �, z,

where σ�μα are the raising and lowering operators of the μth
two-level dipole and σzμα ¼ ½σþμα; σ−μα�=2. We also introduce
cavity bosonic operators cα and c

†
α, which incorporate both

the bare cavity energy and the A2 term that results when
Eq. (1) is substituted into the energy H [[51] Eqs. (72) and
(73)]. The resulting arbitrary-gauge Dicke Hamiltonian is

Hα;2 ¼ ωmJzα þ
N
2
ðϵ0 þ ϵ1Þ þ

1

2
ρd2 þ ωα

�

c†αcα þ
1

2

�

−
Cα
N

ðJþα þ J−α Þ2 − i
g0αffiffiffiffi
N

p ðJþα − J−α Þðc†α þ cαÞ

þ i
gαffiffiffiffi
N

p ðJþα þ J−α Þðc†α − cαÞ; ð3Þ

where ωm ¼ ϵ1 − ϵ0, ω2
α ¼ ω2 þ e2ð1 − αÞ2ρ=m,

Cα ≔ ρd2ð1 − α2Þ=2, g0α ≔ ð1 − αÞωmd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=ð2ωαÞ

p
, and

gα ≔ αd
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρωα=2

p
, with d ≔ ε · d. Here ρ ¼ N=v remains

finite in the thermodynamic limit N → ∞, v → ∞.
Although the nontruncated Hamiltonian H is unique, we
now have a continuous infinity of Dicke HamiltoniansHα;2

such that Hα;2 and Hα0;2 are not equal when α ≠ α0
[43,44,49,50]. This breaking of gauge invariance will turn
out not to be a barrier to eliminating all ambiguities
regarding the occurrence and nature of a quantum phase
transition.
To take the thermodynamic limit we use a Holstein-

Primakoff map defined by Jzα ¼ b†αbα − N=2, Jþα ¼
b†α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − b†αbα

q
, and J−α ¼ ðJþα Þ†, where ½bα; b†α� ¼ 1 [5–7].

The Hamiltonian obtained by substituting these expressions
into Eq. (3) is denoted Hα;2

th . We first consider the material
part of Hα;2

th , which can be written Hα;2
th;m ¼ ω̃α

ml
†
αlα þ

1
2
ðω̃α

m − ωmÞ where ½lα; l†α� ¼ 1 and

ω̃α
m
2 ¼ ωmðωm − 4CαÞ: ð4Þ

The mode operators lα, l
†
α are related to bα and b

†
α by a local

Bogoliubov transformation that incorporates the contribu-
tion Vdip [see Eqs. (79) and (80) in Ref. [51] ]. This results
in the renormalized frequency ω̃α

m in Eq. (4). Reality of ω̃α
m

requires that

ωm ≥ 4Cα ¼ 2ρd2ð1 − α2Þ: ð5Þ

When the electrostatic interaction strength Cα is large
enough this inequality may be violated signaling a phase
transition. We refer to this transition as ferroelectric,
because it is completely independent of the radiative mode.
Inequality (5) generalizes the result of Keeling obtained
when α ¼ 0 (Coulomb gauge) [36]. Violation of inequality
(5) cannot occur in the multipolar gauge α ¼ 1, which does
not therefore admit a purely ferroelectric phase. In what
follows this finding will be reconciled with our claim that a
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unique phase transition is predicted within all gauges. We
show further that only in the Coulomb gauge does the phase
transition appear purely ferroelectric.
We now consider the thermodynamic limit of the total

Hamiltonian, which is [51]

Hα;2;i
th ¼ Ei

αþfiα†fiα þ Ei
α−ciα†ciα þ

1

2
ðEi

αþ þ Ei
α−Þ þ Ci ð6Þ

where the superscript i is either i ¼ n for normal phase, or
i ¼ a for abnormal phase. The polariton operators fiα; ciα
are bosonic satisfying ½fiα; fiα†� ¼ 1 ¼ ½ciα; ciα†� with all
other commutators vanishing. In the normal phase,
i ¼ n, the zero-point constant in Eq. (6) is Cn ¼ Nϵ0 þ
ðρd2 − ωmÞ=2 and the polariton energies are

2En
α�

2 ¼ 8g̃αg̃0α þ ω̃α
m
2 þ ω2

α �
ffiffi
ð

p
½ω̃α

m
2 − ω2

α�2
þ 16½ω̃α

mg̃0α þ ωαg̃α�½ω̃α
mg̃α þ ωαg̃0α�Þ; ð7Þ

where g̃α ¼ gα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωm=ω̃α

m

p
and g̃0α ¼ g0α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃α
m=ωm

p
. The cou-

pling strength at which the lower polariton energy En
α− is no

longer real signals the onset of the abnormal phase and the
breakdown of Hα;2;n

th . Reality of En
α− requires that

ωmðωm − 2ρd2Þ½ω2
α − 2ωmρd2ð1 − αÞ2� ≥ 0: ð8Þ

From the Thomas-Reiche-Kuhn (TRK) inequality e2=m ≥
2ωmd2 it follows that ω2

α ≥ 2ωmρd2ð1 − αÞ2. Therefore, by
inequality (8) Eα− is real if and only if

ωm ≥ 2ρd2: ð9Þ

This simple gauge-invariant result defines the normal
phase. Inequality (9) is stronger than inequality (5), so
ω̃α
m in Eq. (4) is also real when inequality (9) is satisfied.
The Hamiltonian Hα;2;a

th for the abnormal phase takes
over from Hα;2;n

th when inequality (9) is violated. It is
obtained as the thermodynamic limit ofHα;2 written, via the
Holstein-Primakoff map, in terms of displaced modes fα
and c0α such that bα ¼ fα −

ffiffiffiffiffi
βα

p
and cα ¼ c0α þ i

ffiffiffiffiffi
γα

p
,

where βα ¼ β ≔ Nð1 − τÞ=2 and γα ¼ Ng2αð1 − τ2Þ=ω2
α

are of order N, with τ ¼ ωm=ð2ρd2Þ. Note that βα ¼ β is
α independent indicating that the “material”mode is always
displaced by the same macroscopic quantity. On the other
hand, γα is α dependent, so the extent to which the
“radiative” mode is displaced depends on the chosen
definition of radiation. In particular, γ0 ¼ 0, so in the
Coulomb gauge only the material mode is displaced. In the
abnormal phase, i ¼ a, the zero-point constant in Eq. (6) is
Ca ¼ N½ϵ0 − ωmð1 − τÞ2�=ð4τÞ − ρd2=2 and the polariton
energies are

2Ea
α�

2 ¼ 8g
˜
αg
˜

0
α þ ω

˜

α
m
2 þ ω2

α �
ffiffi
ð

p
½ω
˜

α
m
2 − ω2

α�2

þ 16½ω
˜

α
mg

˜

0
α þ ωαg

˜

0
α�½ω˜

α
mg

˜
α þ ωαg

˜

0
α�Þ; ð10Þ

where ω
˜

α
m
2 ¼ ωm

2½1 − ð1 − α2Þτ2�=τ2, while g
˜

0
α
¼

g0α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τω
˜

α
m=ωm

q
, and g

˜α
¼ gα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τωm=ω

˜

α
m

q
. The material fre-

quency ω
˜

α
m is real provided ð2ρd2Þ2 ≥ ωm

2ð1 − α2Þ and the
lower polariton energy Ea

α− is real provided

ð½2ρd2�2 − ωm
2Þ½ω2

α − ωm
2ð1 − αÞ2� ≥ 0: ð11Þ

In the abnormal phase we have 2ρd2 ≥ ωm implying that
ω2
α − ωm

2ð1 − αÞ2 ≥ 0 and therefore that Ea
α− is real. At the

critical coupling point where 2ρd2 ¼ ωm the Hamiltonians
Hα;2;n

th and Hα;2;a
th coincide. We have therefore obtained a

description of the thermodynamic limit for all coupling
strengths. The polariton energies constitute different two-
level approximated results in each different gauge α. This is
shown in [51], Fig. 1. However, every gauge’s approximate
(Dicke) model predicts exactly one ground state phase
transition occurring when ωm ¼ 2ρd2 and the ground state
is unique within the nontruncated theory. Therefore,
inequality (9) should be interpreted as predicting a unique
phase transition. However, the nature of the phase transition
appears to be different depending on the value of α. In the
Coulomb gauge for example, it is necessarily purely
ferroelectric, whereas this is impossible in the multipo-
lar gauge.
The radiative classification of a unique phase transition

will naturally depend on the definition of radiation and the
latter is controlled by the gauge. Evidently, the subsystem

FIG. 1. Second derivative of the normalized ground energy
ðNωÞ−1d2Gs=dη2 plotted for various values of N as a function of
η found using the multipolar-gauge two-level model (solid
curves). A precursor to the discontinuity that locates the phase
transition in the limit N ¼ ∞ can clearly be seen. The green
dotted curves provide exact (gauge-invariant) predictions found
without two-level truncation. Agreement already occurs at
N ¼ 4. β ¼ 3.3 and E is chosen such that ωm ¼ ω.
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gauge-relativity of QED [55], is strongly exemplified by
the phase transition phenomenon. To understand the
physical meaning of “matter” and “radiation” in the gauge
α we note that the totalmultipolar polarization of N dipoles
is PðxÞ ¼ P

N
μ¼1 dμδðx −RμÞ. Since ∇ · E ¼ ρ ¼ −∇ · P

it follows that for x ≠ Rμ we have PT ¼ EL and therefore
Πα ¼ −ET − αEL [cf. Eq. (2)]. Similarly, the material
momentum pα of a dipole is given by Eq. (1) in
which qAð0Þ is the electric dipole approximation of
qAðrÞ ¼ Plong ¼

R
d3xELrðxÞ ×BðxÞ, which is the

momentum of the longitudinal field generated by q at r
with ∇ ·ELrðxÞ ¼ qδðx − rÞ.
As an example, one may consider the Coulomb gauge

in which “matter” is fully dressed by EL, i.e., p0 ¼
m_rþ Plong, so matter as defined by p0 is not fully localized.
Correspondingly, radiation is defined using the field Π0 ¼−ET alone. In the multipolar-gauge (within the electric
dipole approximation) matter is completely bare, i.e.,
p1 ¼ m_r, and therefore fully localized. Radiation is cor-
respondingly defined for x ≠ 0 by the local (causal)
total field Π1 ¼ −DT ¼ −ET −EL ¼ −E. More gener-
ally, α controls how the longitudinal electric degrees of
freedom are shared out, thereby controlling the balance
between localization and electrostatic dressing in defining
the quantum subsystem called “matter.” Radiation is
then defined using the canonical degrees of freedom
left over.
There are noteworthy gauges in between α ¼ 0 and

α ¼ 1, such as gauges relative to which ground state
“virtual photons” are highly suppressed and for which
the corresponding two-level model can sometimes offer
a more accurate representation of the ground state
than conventional quantum Rabi models [49] (see also
Ref. [51]). What differs between gauges is the spacetime
localization properties of “material sources” and their
dressing by virtual photons. In general the most opera-
tionally relevant definitions of the subsystems may depend
on the available measurements, including their time
and length scales. As a result, general statements about
measurable photon condensation (superradiance), that are
independent of experimental context, cannot be made.
What can be demonstrated and is demonstrated below, is
that there are no internal theoretical inconsistencies and no
fundamental paradoxes. Previous no-go and counter no-go
theorems refer to different definitions of radiation and so
are not contradictory. They are in fact equivalent.
We now calculate the ground-state momentum Πα of

radiation defined relative to gauge α. This directly demon-
strates strict equivalence of all gauges and reveals an
unambiguous macroscopic manifestation of the abnormal
phase. We allow the two-level truncation to be performed in
an arbitrary gauge α0. The α0-gauge two-level approxima-
tion of an operator oα ¼ oαðpα;ΠαÞ, denoted oα

0;2
α , is found

by expressing oα in terms of α0-gauge canonical operators
followed by two-level truncation. For Πα ¼ ε ·Πα we have

Πα0;2
α ¼ Πα0 − dðα − α0ÞðJþα0 þ J−α0 Þ=v. We will see that in

the thermodynamic limit the ground state value of Πα0;2
α is

actually independent of α0, i.e., the prediction is gauge
invariant, so we return to the simpler notation Πα;th. Using
the Holstein-Primakoff representation, we find that Πα;th
vanishes in the normal phase and in the abnormal phase is
proportional to the identity. The calculation in Ref. [51]
yields the simple result

Πa
α;th ¼ αρd

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
¼ α

2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ρd2Þ2 − ωm

2

q
: ð12Þ

The factor of α in Eq. (12) is highly significant. It
demonstrates that the degree of superradiance in the
abnormal phase is proportional to α, with the minimum
value of zero occurring only in the Coulomb gauge.
To demonstrate equivalence between all gauges we

calculate the α-gauge transverse polarization PTα ¼
αε · PT ¼ αðΠ0 − Π1Þ, which is such that Pα0;2

Tα ¼
αðd=vÞðJþα0 þ J−α0 Þ. This quantity is also α0 independent
in the thermodynamic limit. In the normal phase PTα;th

vanishes, whereas in the abnormal phase it is found by the
same method that leads to Eq. (12) to be Pa

Tα;th ¼
−αρd

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
. Equation (12) then yields Πa

α;th ¼ −Pa
Tα;th,

which since −Ea
T;th ¼ Πa

0;th ¼ 0, is seen to be nothing but
the fundamental kinematic relation, Eq. (2). This estab-
lishes consistency between all gauges. The quantity
jPα0;2;a

T;th j ¼ jPα0;2;a
Tα;th =αj provides a gauge-invariant monotonic

measure of the coupling distance past the phase transition
point. Thus, independent of the gauge the onset of the
abnormal phase manifests in the form of a macroscopic
value of the gauge-invariant field PT ;

Pa
T;th ¼ −ρd

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
ð13Þ

which is plotted in [51], Fig. 2. Within the present
simplified Dicke-type treatment the field PT is independent
of spatial position x, but at a more fundamental level PT
coincides with the longitudinal electric field EL away from
the dipole positions, i.e., for x ≠ Rμ. Whether one con-
siders EL ¼ PT to be “material” or “radiative” determines
whether one calls the phase transition “purely ferroelectric”
or “superradiant,” and this in turn is determined by the
gauge choice as discussed earlier.
We finally consider a concrete example. We assume that

each dipole has canonical operators pointing along ε and a
double-well potential Vðθ;ϕÞ ¼ −θr2=2þ ϕr4=4 where
θ and ϕ control the shape of the double well.
The Hamiltonian of each dipole is therefore Hα

m ¼
ðE=2Þ½−∂2

ζ − βζ2 þ ðζ4=2Þ� [43] where we have defined
ζ ¼ r=r0 with r0 ¼ ð1=½mϕ�Þ1=6, along with E ¼ 1=ðmr20Þ
and β ¼ θmr40. We also define the gauge-invariant dimen-
sionless coupling parameter η ¼ ðe=ωÞ ffiffiffiffiffiffiffiffiffi

ρ=m
p

. The para-
meters e, m, and ρ can now be eliminated in favor of E, β,
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and η. To demonstrate that it is possible to obtain accurate
two-level model predictions and to show a clear precursor
to the phase transition, in Fig. 1 we consider the normalized
second derivative of the (shifted) ground energy [7]. In the
abnormal phase of the thermodynamic limit this is given by

1

Nω

d2Gα;2
s

dη2

�
�
�
�
th;a

¼ −
ωm

ω

d2

dη2
ð1 − τÞ2

4τ
ð14Þ

where Gs ¼ G − ρd2=2 is the ground energy G shifted by
the coupling-dependent term ρd2=2 in Eq. (3). We choose
β ¼ 3.3, which provides a highly anharmonic single-dipole
spectrum such that ðϵ2 − ϵ0Þ=ωm ≈ 36. The two-level
truncation within the multipolar gauge α ¼ 1 is sub-
sequently found to be accurate in predicting low energy
properties. This was first confirmed in the case of the Rabi
model N ¼ 1 in Ref. [43]. The accuracy actually increases
with N and convergence of exact (gauge-invariant, no two-
level truncation) and approximate predictions already
occurs at N ¼ 4. The situation may change if the double
well is parameterized differently such that the multipolar
truncation is not optimal [49], see also additional analysis
in Ref. [51].
The situation may also change if additional cavity modes

are taken into account [50,56]. In particular, the multipolar-
gauge coupling scales as

ffiffiffiffi
ω

p
such that the single-mode

approximation appears least favorable in this gauge, and
has been shown to breakdown in the ultrastrong-coupling
regime [56]. To incorporate some of the effects of non-
resonant modes within a Dicke-type model a formal
procedure of adiabatic elimination can be used and this
also has the advantage of enabling an exploration of more
diverse dipolar geometries [29]. Nevertheless, for our
purpose of determining whether a physical phase transition
can be supported by systems describable using a Dicke
model and on understanding its relationship to the choice of
gauge, the single-mode restriction is sufficient, because the
qualitative behavior of the thermodynamic limit of the
single-mode Dicke model is known to carry over to the
multimode case [10,57]. The extension to general dipolar
arrangements, and to more sophisticated cavity models
warrants further study.
We have shown that a unique physical phase transition can

occur in simple many-dipole cavity QED systems. We have
resolved all ambiguities pertaining to the choice of gauge by
determining both the origin and properties of the phase
transition in terms of any gauge’s definitions of the quantum
subsystems, and by demonstrating equivalence between all
gauge choices. We have shown that the original “no-go
theorem” [30] does not apply, and also that one need not
look beyond ordinary cavity QED in order to find systems
supporting a superradiant phase transition. A no-go theorem
for ground state superradiance occurs for, and only for, the
Coulomb-gauge definition of radiation. We have shown that
although the two-level approximation ruins the gauge

invariance of the theory, unambiguous predictions can still
be obtained. The framework developed here should be
straightforwardly extendable to artificial solid-state and
superconducting systems, as well as to driven and dissipative
systems. This will elucidate both qualitatively and quanti-
tatively the underlying causes and physical natures of
thermodynamic phase transitions therein, and in each case,
determine optimal approximate descriptions.
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