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We study dynamical phase transitions (DPT) in the driven and damped Dicke model, realizable for
example by a driven atomic ensemble collectively coupled to a damped cavity mode. These DPTs are
characterized by nonanalyticities of certain observables, primarily the overlap of time evolved and initial
state. Even though the dynamics is dissipative, this phenomenon occurs for a wide range of parameters and
no fine-tuning is required. Focusing on the state of the “atoms” in the limit of a bad cavity, we are able to
asymptotically evaluate an exact path integral representation of the relevant overlaps. The DPTs then arise
by minimization of a certain action function, which is related to the large deviation theory of a
classical stochastic process. Finally, we present a scheme which allows a measurement of the DPT in a
cavity-QED setup.
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Introduction.—Phase transitions in equilibrium are the
prime examples where nonanalytical behavior of physical
observables occurs. Upon changing a parameter in the
considered equilibrium system, such as temperature, the
state of the system undergoes a nonanalytical change
resulting in cusps or jumps of observables. The under-
standing of equilibrium classical and quantum phase
transitions is far developed and a tremendous amount of
theoretical and experimental work has been dedicated to the
field. Recently, however, motivated partly by experimental
advances, the focus of many researchers has shifted to the
study of nonequilibrium physics. Nowadays the dynamics
of quantum many-body systems can be measured in real
time in platforms such as cold atomic gases and trapped
ions [1,2]. Naturally, the question arises whether non-
analyticities of physical observables can occur also in these
settings. One particular example of such behavior are
dynamical phase transitions (DPT) in the sense that an
observable changes nonsmoothly at a critical time after a
quench, that is a sudden parameter change [3]. We will
focus on this notion of dynamical phase transitions in this
Letter. While a full understanding of the phenomenon is
still missing, several important results were obtained for
unitary quantum many-body evolution in systems tradi-
tionally studied in the condensed matter community
[4–11], including experimental realizations with cold atom
and trapped ion experiments [12,13]. Since in many
experiments the physical systems are not isolated but
subject to dissipation, it is important to consider also
many-body systems evolving nonunitarily. For simple
Fermionic models it was shown that, while finite temper-
ature generally smooths out nonanalyticities, they may
persist in the presence of dissipation [14–17]. In fact, DPTs

can even be found in classical dissipative systems, like
solutions of the KPZ equation [18–20]. In this Letter we
study a driven and damped version of the Dicke model, a
well-known quantum optical many-body system which can
be experimentally realized [21–24]. Let us first set the stage
by revising the general ideas behind DPTs. For unitary
dynamics, the Loschmidt echo is the absolute value of the
quantum mechanical overlap of the time-evolved state and
the initial state [5,6]. In the thermodynamic limit of infinite
system size N → ∞ this object may become nonanalytic as
a function of time. For open quantum systems we need a
generalization of the Loschmidt echo for mixed states. This
can be straightforwardly defined as the Uhlmann fidelity
[25–27] of final and initial state, which is however
cumbersome to treat analytically [14–16,28]. Here, we
like to consider a much simpler observable

LðtÞ ¼ trρð0ÞρðtÞ; ð1Þ

which will be used as definition of the Loschmidt echo in
this Letter. Many authors stick to the Uhlmann-fidelity
measure as the definition of the Loschmidt echo because of
its interpretation as a distance measure. However, the
fidelity is much harder to access in experiments than
the probabilistic quantity proposed here. We note that
the quantity (1) is related to the Hilbert-Schmidt distance
of final and initial state tr½ρðtÞ − ρð0Þ�2. In particular, a
nonanalyticity of L clearly implies a nonanalyticity of the
Hilbert-Schmidt distance. Since overlaps generally scale
exponentially with system size, one considers the rate
function
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rðtÞ ¼ −
1

N
lnLðtÞ; ð2Þ

which is well behaved in the thermodynamical limit [6]. If
at a critical time the rate function changes nonanalytically
the system is said to undergo a DPT.
Dynamical transitions in the driven Dicke model.—We

analyze DPTs in a driven version of the well-known Dicke
model. The Dicke model is an iconic model in quantum
optics that has been studied in great detail both theoretically
and in experiments [21]. It consists of N two level systems,
referred to as the atoms, interacting collectively with a
single mode of a light field inside a cavity. If in addition the
atoms are driven by an external classical field, the
Hamiltonian of the model reads [29]

H ¼ Δ0a†a − Δ1Jz þ ωJx þ g

ffiffiffiffi
2

N

r
ðJþa† þ J−aÞ; ð3Þ

where we choose a frame rotating at the frequency of the
drive, and counterrotating terms are neglected. Here, a is
the cavity photon annihilation operator and J⃗ ¼ 1

2

P
N
i¼1 σ⃗i

is the collective angular momentum operator of the two
level atoms. Δ0 and Δ1 define the detuning of the cavity
mode and the two level systems, respectively, and ω is
determined by the amplitude of the external field. For
simplicity we consider a resonant drive such that Δ1 ¼ 0.
In addition to the unitary dynamics generated by the
Hamiltonian (3), photons leak out of the cavity. This can
be modeled by adding the usual dissipator of GKSL form
[30,31], so that the master equation for the state of atoms
and cavity is

∂tρ ¼ −i½H; ρ� þ γð2aρa† − fa†a; ρgÞ; ð4Þ

and γ denotes the cavity loss rate. A brief description of the
dynamics of this model in mean-field theory can be found
in the Supplemental Material [32]. We first provide some
numerical evidence that DPTs indeed appear in the model,
by focusing on the Loschmidt echo of the atomic state
ρA ¼ trCρ. As initial state we choose an empty cavity and
all atoms in the ground state. The rate function we want to
consider is

rðtÞ ¼ −
1

N
ln trρAðtÞρAð0Þ: ð5Þ

In Fig. 1, we show this function for moderate system
sizes, obtained from numerical integration of the master
equation. For the chosen parameters, dynamical transitions
occur. As the system size increases, the rate function
develops typical cusps at critical times where the overlap
with the initial state is small, i.e., the rate function has a
local maximum. Due to the dissipative nature of the
dynamics, the state will spread in the Hilbert space over

time, leading to a damping of the peaks. Crucially, even
though the system is dissipative, this emergence of cusps is
generic and does not require fine tuning of parameters.
We note here that a straightforward numerical determi-

nation of Loschmidt echoes is a computationally hard task
because quantum state overlaps generally exhibit exponen-
tial scaling so that exponentially more precision is required
for larger N. In addition, the numerical approach does not
give an insight to the mechanism leading to the emergence
of the nonanalyticities.
Exact results in the bad cavity limit.—In order to

simplify the model allowing for an exact treatment, we
adiabatically eliminate the cavity by assuming a large
cavity loss rate γ. More precisely, we consider the limit
γ → ∞ while keeping λ ¼ ωγ=ð2g2Þ constant. The GKSL
master equation for the atomic state ρA that we want to
consider reads

∂tρA ¼ −iω½Jx; ρA� þ
ω

λN
ð2JþρAJ− − fJ−Jþ; ρAgÞ

þ ω

λN
ð2JzρAJz − fJ2z ; ρAgÞ: ð6Þ

This is, up to the dephasing term in the second line, the
correct master equation describing the atomic state in bad
cavity limit of the driven dissipative Dicke model. The
added dephasing is merely a technical trick to avoid subtle
complications. In fact, it can be argued that the presence of
this term does not lead to a change of the Loschmidt rate
function in the limit of infinite system size [32]. The
steady state phase diagram of (7) resembles that of the
cooperative resonance fluorescence model [35–40]. For
λ ¼ ωγ=ð2g2Þ < 1 there is a single symmetric steady state.
At λ ¼ 1 a second-order symmetry breaking phase

FIG. 1. Loschmidt rate function (5) of the driven Dicke model
for parameters g2 ¼ 25=72ωγ, Δ0 ¼ 0.1ω. As the system size is
increased, the rate function develops cusps at critical times.
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transition occurs. The model then exhibits oscillations that
persist on a timescale of the order of the system size. As a
result of these oscillations, DPTs occur in this phase.
Proceeding with technical steps, we utilize results from
Ref. [35]. Therein it is shown that no entanglement between
the atoms is produced by the dynamics generated with this
master equation, and the state can be mapped to a classical
stochastic process of coherent states. With this exact
mapping, we are able to find an exact expression for the
state in the limit of large system sizes, without relying on
semiclassical approximations [41]. In particular, the P
function of the state is given by

Pðϕ; θ; tÞ ¼ F expf−N½Sðϕ; θ; tÞ þOð1=NÞ�g; ð7Þ

where ϕ and θ are spherical coordinates constituting the
phase space of a spin [32]. The action S and the non-
exponential prefactor F follow from the steepest descent
evaluation of the path integral propagator for the P
function. Since the P function obeys a Fokker-Planck
equation, this corresponds to the weak noise theory of a
classical stochastic process, and S is the action of the path
integral introduced by Martin, Siggia, Rose, and others
(MSRJD) [42–45]. With the diagonal P representation of
the state in terms of coherent states, the Loschmidt echo is
given by

LðtÞ ¼
Z

dΩPðϕ; θ; tÞhϕ; θjρAð0Þjϕ; θi; ð8Þ

where jϕ; θi is a spin coherent state and dΩ ¼ dϕdθ sin θ is
the phase space measure for the spin [46]. For typical initial
conditions, in particular for all pure initial states, the
overlap term scales exponentially with the system size,
such thatWðϕ; θÞ ¼ − 1

N ln hϕ; θjρAð0Þjϕ; θi is independent
of N. The integral (8) can now be performed in steepest
descent approximation, by expanding the exponent of the
integrand around its minimum values up to second order.
This exponent, we name it K, consists of the sum of two
contributions, the MSRJD action S from (7) and the
contribution from the overlap

Kðϕ; θ; tÞ ¼ Sðϕ; θ; tÞ þWðϕ; θÞ: ð9Þ

The steepest descent approximation is completed by
performing a Gaussian integration, which yields

LðtÞ ¼
X
β

2π

N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detK00

β

q Fβe−NKβ : ð10Þ

Here, β is a label for the local minima of K, and K00 is the
Hessian matrix of K. The rate function in the limit of
infinite system size is then determined by the absolute
minimum of the exponent K. A DPT occurs at a critical
time when the value of K at two minima coincides. In order

to compute the Loschmidt echo with the steepest descent
method, the main task is to determine the action S. We
provide a detailed description of this in the Supplemental
Material [32]. Figure 2 shows the Loschmidt rate function
computed with the steepest descent method for λ ¼ 1.2 and
starting with the atomic ground state. For large system
sizes, we find excellent agreement with a direct integration
of the master equation.
As expected, the asymptotic function has a cusp at a

critical time, which can be seen as a first-order transition,
with K acting as the potential function. In Fig. 3, this
potential function is displayed along the cut θ ¼ π=2 where
the minima are located. We also display the extremal
MSRJD action S. This object always has a single minimum
S ¼ 0, which follows the “mean field” trajectory—this is
the most relevant contribution to the state. The potential K,
however, features two local minima, because in addition to
the action it also includes the contribution W from the
quantum overlap of trajectory and initial state. Swapping of
the global minimum leads to a cusp in the asymptotic
Loschmidt rate function. For finite system size there exists
a critical region of times in proximity to the critical time at
which the Loschmidt echo is influenced by both minima.
Then no nonanalyticities occur and the cusp is smoothed
out. The picture makes clear that the nonanalyticities are
stable with respect to changes in the model parameters and
that these merely determine the exact critical time.
Nonanalyticities can generally arise in observables which
are determined by the tails of the quantum distribution,
such as overlaps. We do not see a reason to consider
specifically only the Loschmidt echo as the overlap of
interest. Recently, without referring to DPTs, a few works
have been published which discuss cusp caustics occurring
in Fock-space representations of quantum states following
quenches [47–49]. In the case of model (7), we can
compute the Fock-state representation of the density matrix
using the steps presented above. We find that the cusp in

FIG. 2. Loschmidt rate function of the model (7) for λ ¼ 1.2
and the atomic ground state as initial state (steady state for λ ¼ 0)
for different atom numbers N. Curves from the numerical
integration of the master (dashed colored lines) agree very well
with the steepest descent results (solid colored lines). The
asymptotic (N → ∞) Loschmidt rate function (black) has a cusp
at a critical time.
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Fig. 2 emerges at later times for other Fock-state overlaps
defining a transition line in Fock space [32]. This is
discussed briefly in the Supplemental Material [32].
Measurement scheme.—Even though the model can be

realized in current experimental platforms [22–24,50,51],
straightforward measurement of overlaps for finite system
size does not predict nonanalyticities in the thermodynam-
ical limit. However, because of the exponential scaling,
measurement of overlaps is restricted to small systems.
Thus to find evidence for a DPT, further theoretical input is
required [12,13]. To this aim we can utilize our knowledge
from the analytical investigations. Loosely speaking, evi-
dence for the transition can be found if, in an experiment,
one is able to probe the contributions to the Loschmidt echo
of both minima from Eq. (9) separately. In the driven Dicke
model, this can be achieved in an elegant way by combin-
ing the measurement of the Loschmidt echo of the atoms
with a homodyne measurement of the light field in the
cavity. Since the light field contains information about the
atomic state, the homodyne measurement outcome can
predict the “location” of this state in phase space. In more
detail, one has to distinguish whether the cavity quadrature
is in the “left” or “right” half of phase space, which
corresponds to a generalized measurement given by the
POVM Eþ þ E− ¼ 1 with

E� ¼
Z

d2α
π

jαihαjΘð�ReαÞ: ð11Þ

Here, jαi is a coherent state of the cavity field and α is the
complex coherent state label. Realizing this in practice is as
simple as discriminating the measurement outcomes by
whether the homodyne measurement gives a positive or
negative value of the quadrature haþ a†i. The (unnormal-
ized) reduced state of the atoms conditioned on the out-
come of measurement (11) is given by

ρA� ¼ trCðE�ρÞ; ð12Þ

and the full reduced state is recovered upon collecting all
outcomes ρA ¼ ρAþ þ ρA−. This way the Loschmidt echo
can be written as

LðtÞ ¼ trAρAðtÞρAð0Þ;
¼ trAρAþðtÞρAð0Þ þ trAρA−ðtÞρAð0Þ;
≡ LþðtÞ þ L−ðtÞ: ð13Þ

Note that L� can be obtained experimentally by measure-
ment of the Loschmidt echo after measurement of the light
field. Crucially, both contributions are overlaps which
exhibit exponential scaling in system size. Therefore we
know that in the thermodynamical limit only the minimum
of both curves contributes to the corresponding rate
function. If the two curves cross at a critical time, we
have found evidence for an emerging nonanalyticity.
Figure 4 displays the rate functions corresponding to the
conditioned states which we obtained by numerical inte-
gration with just N ¼ 12 atoms. One can see that the two
curves cross at the critical time where the dynamical
transition is expected. Thus, even though the finite-size

FIG. 3. The Landau-like function K from (9) is displayed along the symmetry line θ ¼ π=2 at different times, for the quench scenario
in Fig. 2. The asymptotic Loschmidt echo is determined by the absolute minimum of K, which switches at the critical time. The dashed
line shows the extremal MSRJD action S, which has only a single minimum at all times.

FIG. 4. Loschmidt rate function of the driven dissipative Dicke
model with parameters as in Fig. 1 (lower) with N ¼ 12 obtained
by numerical integration of the master equation. The � lines are
the rate functions corresponding to the conditioned Loschmidt
echoes Eq. (13). They cross at the critical time t ≈ 4=ω indicating
the dynamical transition.
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Loschmidt echo for the full state is smooth, the non-
analyticity can be measured with minimal theoretical input.
Discussion and conclusions.—In this Letter we studied

dynamical phase transitions in the driven and damped
Dicke model. These transitions are characterized by cusps
in the Loschmidt rate function at critical times, and occur
for a wide range of parameters. Focusing on the bad cavity
limit, we were able to determine the Loschmidt echo in an
exact way, by mapping the dynamics to a classical
stochastic process. Quantum overlaps can then be
expressed as classical phase space integrals. This property
of the model allows to obtain a complete and exact
description of the DPTs. It is well known that nonanaly-
ticities can emerge in the large deviation theory of classical
dissipative systems [52,53]. A similar mechanism leads to
the cusps in the Loschmidt echo of the open quantum
system at hand. Quantum overlaps are determined by
minimization of a Landau-like potential. At a critical
time, this minimum swaps position, leading to a cusp.
The difference to recent studies in classical systems
[18–20,54] is the quantum mechanical term W that has
to be included in the potential function Eq. (9), which is
crucial for the emergence of a dynamical transition here.
From a general point of view, we find that all overlaps of
the time evolved quantum state with Fock states are
determined by large deviations of the quantum distribution
in phase space, and can develop cusps asymptotically as the
system size is increased. The model can be realized in
current experimental platforms and we have presented a
simple way to measure the rate function and the critical
time in systems consisting of few atoms only. Because this
scheme relies on measurements of the environment of the
atoms, we crucially exploit that the system is not closed.
From a theoretical point of view, the thorough description
of dynamical phase transitions in the driven Dicke model
can be a starting point to find quantum optical models in
which dynamical transitions occur that accompany sym-
metry breaking. This would allow the study of scaling and
universality near the critical time.
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