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We show that a single photon propagating through a Rydberg-dressed atomic ensemble can exchange its
spin state with a single atom. Such a spin-exchange collision exhibits both dissipative and coherent
features, depending on the interaction strength. For strong interaction, the collision dissipatively drives the
system into an entangled dark state of the photon with an atom. In the weak interaction regime, the
scattering coherently flips the spin of a single photon in the multiphoton input pulse, demonstrating a
generic single-photon subtracting process. An analytical treatment of this process reveals a universal trade-
off between efficiency and purity of the extracted photon, which applies to a wide class of single-photon
subtractors. We show that such a trade-off can be optimized by adjusting the scattering rate under a novel
phase-matching condition.
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Achieving strong light-atom interactions at the single-
particle level represents a long-standing goal in quantum
optics [1]. Realizing this goal will not only enable one
to test fundamental physics in quantum electrodynamics
(QED) [2–6], but it will also facilitate meaningful appli-
cations of quantum communication [7–9], simulation
[10–13], and metrology [14–16]. As a promising approach,
interfacing photons with Rydberg atoms [17] via electro-
magnetically induced transparency (EIT) [18] has attracted
much attention in recent years [19–31]. To date, a host of
interaction processes have been established with this
approach, e.g., a single atomic excitation can block the
transmission of a single photon [19–23], imprint a global
phase onto a single photon [25–27], reflect a single photon
[30], or exchange its position with a single photon [29,31].
In this Letter, we establish a different type of atom-

photon interaction in the Rydberg EIT system, with which a
single photon can exchange its spin state with a single
atom. It is achieved by coupling photons to an atomic
ensemble that interacts with a single control atom via
Rydberg dressing [32,33]. We show that under suitable
conditions, the scattering dynamics can be tuned from
dissipative to coherent. In the dissipative regime, the
system evolves robustly into an entangled dark state of a
photon and the control atom. For coherent scattering, the
dynamics maps to a model of generic single-photon
subtraction, whose solution reveals a universal trade-off
between efficiency and purity of the subtracted single
photon, and yields a phase-matching condition for
optimizing its performance.
The system we study is illustrated in Fig. 1(a), where the

input photon carries photonic spin (polarization) and can

exchange its state with the pseudospin (internal state)
of the control atom (subscripts a and p refer to atom
and photon, respectively). This atom-photon spin-exchange
interaction is mediated by an atomic ensemble, which
strongly interacts with both the photon and the control
atom [34–36]. The level structure shown in Fig. 1(b) helps
to realize such an interaction. A photon propagates in an
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FIG. 1. (a) Schematic for the spin-exchange collision between
input photons and the control atom. (b) Level structure for the
control atom and the ensemble atom. For 87Rb atom, we can
choose jgi ¼ j5S1=2; F ¼ 1; mF ¼ 0i, je�i ¼ j5P3=2; F ¼ 2;
mF ¼ �1i, jsi ¼ j5S1=2; F ¼ 2; mF ¼ 0i, and jri ¼ jnS1=2;
J ¼ 1=2; mJ ¼ −1=2i. The coupling Ω between jsi and jri
can be constructed using a two-photon process with an inter-
mediate state j5P1=2; F ¼ 1; mF ¼ −1i. The two-photon detun-
ings are δ↓ ¼ Ω2=Δ and δ↑ ¼ −δ↓ to compensate for dressing
induced level shifts of states jri and jsi. (c) Schematic of the spin
exchange between the control atom and a spin-wave excitation in
the ensemble.
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atomic ensemble via two distinct EIT processes [37,38]: the
left circularly polarized (pseudo-spin-up) photonic field
Ê↑ðrÞ forms a Rydberg EIT involving the ground state jgi,
the intermediate state je−i, and the Rydberg state jri; while
the right circularly polarized (pseudo-spin-down) photonic
field Ê↓ðrÞ participates in a Λ-type EIT formed by jgi, jeþi,
and another ground state jsi. In addition, state jsi is dressed
to Rydberg state jri for both the control atom and
ensemble atoms.
It is shown in Ref. [33] that the above dressing scheme

induces an effective spin-exchange interaction V̂ex between
atoms in jsi and jri. At low photon density, interac-
tions between ensemble atoms are negligible, such that
V̂ex ¼

P
i UðriÞσ̂rsσ̂isr þ H:c: just describes the spin-

exchange between the control atom (σ̂μν ¼ jμihνj) and
each ith atom in the ensemble (σ̂iμν). Since most ensemble
atoms are in the ground state jgi, V̂ex actually describes the
spin-exchange between the control atom and a collective
excitation (spin-wave) in the atomic ensemble [Fig. 1(c)],
i.e., V̂ex ¼

R
drUðrÞσ̂rsΣ̂†

gsðrÞΣ̂grðrÞ þ H:c:, where Σ̂gμðrÞ
denotes the spin-wave field operator for the collective
excitation in state jμi [39]. With the above EIT
configuration, the spin-wave field Σ̂grðrÞ is coupled to

the photonic field Ê↑ðrÞ to form a dark state polariton

(DSP) field [41] Ψ̂↑ðrÞ ¼ Ê↑ðrÞ cos θ↑ − Σ̂grðrÞ sin θ↑,
while Σ̂gsðrÞ is coupled to Ê↓ðrÞ to form another DSP

Ψ̂↓ðrÞ¼ Ê↓ðrÞcosθ↓− Σ̂gsðrÞsinθ↓, with tan θμ ¼ gp=Ωμ.
In this way, V̂ex maps to the exchange interaction between
the control atom and the photonic field.
The exchange interaction takes the form UðrÞ ¼

U0=½1þ ðjrj=RcÞ6�, where the strength U0 ¼ Ω2=Δ is
determined by the Rabi frequency Ω and the detuning Δ
of the dressing field (Ω ≪ Δ), and the effective range is
Rc ¼ ðC6=ΔÞ1=6 with C6 the van der Waals (vdW) inter-
action coefficient between atoms in state jri [33]. It does
not need one to tune near a Föster resonance and can be
conveniently controlled by the dressing field. Furthermore,
the dressing scheme adopted here suppresses the unwanted
direct interaction (∼Ω4=Δ3) between input photons in
mode Ê↓. These desirable features as well as other details
are compared to the off-diagonal vdW interaction scheme
in the Supplemental Material [39].
Single-photon scattering.—First, we consider the inter-

action between the control atom and a single photon
propagating along z direction. Neglecting the decoherence
of the Rydberg state, the input or output state in the one-
dimensional (1D) case can be expressed as

jψðtÞi ¼
Z

dzE↓↑ðz; tÞÊ†
↓ðzÞj0i ⊗ j↑ia

þ
Z

dzE↑↓ðz; tÞÊ†
↑ðzÞj0i ⊗ j↓ia; ð1Þ

where j0i denotes the vacuum state for photons, and
j↑ia ¼ jri, j↓ia ¼ jsi represent two internal states of
the control atom. The spatiotemporal feature of the
photon is described by the wave function Eμνðz; tÞ ¼
hνjah0jÊμðzÞjψðtÞi. The output state of the system is
determined by the dynamics inside the atomic ensemble
z ∈ ½0; L�, where the spin-wave field needs to be taken into
consideration. Let P↓↑, S↓↑, P↑↓, and S↑↓ describe the
collective excitation in state jeþi, jsi, je−i, and jri,
respectively [42]. Then the evolution of the wave function
ψðz; tÞ ¼ ðE↓↑; P↓↑; S↓↑; E↑↓; P↑↓; S↑↓ÞT is governed by
i∂tψ ¼ Hψ [39] with

H ¼

2
6666666664

−ic∂z gp 0 0 0 0

gp −iγ Ω↓ 0 0 0

0 Ω↓ UðzÞ 0 0 UðzÞ
0 0 0 −ic∂z gp 0

0 0 0 gp −iγ Ω↑

0 0 UðzÞ 0 Ω↑ UðzÞ

3
7777777775

; ð2Þ

where gp and 2γ are the collective atom-photon
coupling constant and the linewidth of the jgi − je�i
transition, respectively, Ω↑ (Ω↓) denotes the control field

for the Rydberg (Λ-type) EIT, and UðzÞ ¼ U0=½1þ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2⊥

p
=RcÞ6� is the potential. In the frequency (ω)

domain, we have

i∂z

�
E↓↑

E↑↓

�
¼

�
χ↓ðz;ωÞ κðz;ωÞ
κðz;ωÞ χ↑ðz;ωÞ

��
E↓↑

E↑↓

�
; ð3Þ

where the susceptibilities χ↓ and χ↑ come from the dressing
induced diagonal interaction, while κ describes the spin-
exchange coupling between states j↓ip ⊗ j↑ia and
j↑ip ⊗ j↓ia. For the input state j↓ip ⊗ j↑ia, the solution
to Eq. (3) can be written as E↓↑ðL;ωÞ ¼ TðωÞE↓↑ð0;ωÞ,
and E↑↓ðL;ωÞ ¼ RðωÞE↓↑ð0;ωÞ. At steady state (ω ¼ 0),
we find χμðz; 0Þ ¼ VðzÞ=vμ, and κðz; 0Þ ¼ VðzÞ= ffiffiffiffiffiffiffiffiffiffiv↑v↓

p ,
where vμ ¼ cΩ2

μ=g2p (μ ¼ ↑;↓) is the photon group veloc-
ity in the slow-light regime, and

VðzÞ ¼ UðzÞ
1þ iγUðzÞðΩ2

↓ þΩ2
↑Þ=Ω2

↓Ω
2
↑

ð4Þ

is the effective potential. In this case, the scattering
coefficients Tð0Þ¼ðΩ2

↑e
−i2ϕþΩ2

↓Þ=ðΩ2
↓þΩ2

↑Þ and Rð0Þ ¼
Ω↑Ω↓ðe−i2ϕ − 1Þ=ðΩ2

↓ þ Ω2
↑Þ are determined by the inter-

action induced phase factor ϕ ¼ ðv↑ þ v↓Þ
R
L
0 dzVðzÞ=

2v↑v↓. For L > 4Rc and r⊥ < Rc, the complex phase
factor is simply given by ϕ ≈ ð2π=3Þξ½1 − ið5=3Þξ� × ODc,
where ξ ¼ U0=γEIT measures the interaction strength in
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units of the effective EIT linewidth γEIT ¼ 2Ω2
↑Ω

2
↓=

ðΩ2
↓ þ Ω2

↑Þγ, and ODc ¼ g2pRc=γc denotes the effective
optical depth.
When the interaction strength U0 is comparable to

the EIT linewidth Ω2
↑=γ or Ω

2
↓=γ, the ratio ξ is large. Con-

sequently, both VðzÞ and ϕ have a large imaginary part.
In this dissipative interacting regime, as ODc increases,
the photon loss probability rapidly grows. However,
Eq. (3) possesses an eigenstate free from dissipation, such
that as ODc increases further, the loss rate saturates,
and the system eventually evolves into this dark state
ðΩ↓j↓ipj↑ia − Ω↑j↑ipj↓iaÞ=ðΩ2

↓ þΩ2
↑Þ1=2 with a proba-

bility Ω2
↓=ðΩ2

↓ þ Ω2
↑Þ [Fig. 2(a)]. Thus, such a dissipative

spin-exchange collision can be used for robust generation
of atom-photon entanglement. If the interaction strength is
much smaller than the EIT linewidth, i.e., ξ ≪ 1, the
effective potential VðzÞ ≈UðzÞ is essentially real and the
imaginary part of ϕ is largely suppressed. In this case,
as ODc increases, the system undergoes a coherent oscil-
lation between j↓ip ⊗ j↑ia and j↑ip ⊗ j↓ia [Fig. 2(b)].

We calculate the scattering coefficients for a finite
beam width w < Rc [31] [see Figs. 2(a) and 2(b)], and
find nice agreement with the results predicted by the
1D model.
The single-photon scattering elucidated above can be

used as a building block in quantum networks. For
scattering at small ODc, whether dissipative or coherent,
the induced atom-photon entanglement can be purified to
establish quality entanglement between distant atoms [39].
Unlike the DLCZ protocol [43], the entanglement we
discuss here refers to polarization bases instead of Fock
space, so that photon-number resolved detectors are not
required, and the system is insensitive to interferometric
instabilities [8,44]. At large ODc, it is possible to make
ϕ ¼ π=2 at Ω↑ ¼ Ω↓, such that the collision leads to a
coherent mapping between atomic and photonic states, i.e.,
j↓ip ⊗ ðαj↓i þ βj↑iÞa ↔ ðαj↓i − βj↑iÞp ⊗ j↓ia, which
facilitates quantum state transfer in a network.
We now focus on the coherent scattering process where

dissipation is negligible. In this case, the light propagation
inside the atomic ensemble can be described by DSP fields
Ψ̂↑ðzÞ and Ψ̂↓ðzÞ. For frequency components well within
the EIT bandwidth, the dynamics of DSP fields are
governed by the Hamiltonian

Ĥ ¼ −iv↓
Z

dzΨ̂†
↓ðzÞ∂zΨ̂↓ðzÞ − iv↑

Z
dzΨ̂†

↑ðzÞ∂zΨ̂↑ðzÞ

þ
Z

dzUðzÞ½σ̂↑↑Ψ̂†
↓ðzÞΨ̂↓ðzÞ þ σ̂↓↓Ψ̂

†
↑ðzÞΨ̂↑ðzÞ�

þ
Z

dzUðzÞ½σ̂↑↓Ψ̂†
↓ðzÞΨ̂↑ðzÞ þ H:c:�; ð5Þ

whose first line denotes the photon kinetic energy, and the
second (third) line represents the density (spin-exchange)
interaction between the photon and the atom. As shown in
Figs. 2(c)–2(f), this Hamiltonian is accurate for describing
coherent scatterings [the asymmetries between different
components in Figs. 2(e) and 2(f) arise from the mismatch
of velocities v↑ and v↓].
Multiphoton scattering.—Next, we consider coherent

spin-exchange collisions between the control atom and
an input pulse containing n identical photons. Here, we
focus on the limit of a long input pulse with a duration
Δt ≫ nRc=vμ. In this low-photon-density regime, photons
rarely interact with the control atom at the same time, which
allows us to obtain an analytical form for the output state
based on single-photon scattering coefficients, without
numerically solving the multiphoton Schrödinger equation
based on Eq. (5).
Assuming the n incoming photons are in the spin-down

state with a real temporal wave function hðtÞ normalized asR
dth2ðtÞ ¼ 1 and the control atom is initially spin-up, the

input state of the system is given by (taking c ¼ 1)

FIG. 2. (a),(b) Scattering coefficients versus ODc in the dis-
sipative (ξ ¼ 0.5) and the coherent (ξ ¼ 0.01) regime. The dots
and the solid lines correspond to the results for a Gaussian beam
with a waist w and the 1D model, respectively. We take
Ω↑;↓=2π ¼ 3 MHz and Rc ¼ 9 μm in (a), Ω↑;↓=2π ¼ 8 MHz
and Rc ¼ 12 μm in (b), γ=2π ¼ 3 MHz, r⊥ ¼ 2w ¼ 4 μm,
L ¼ 4Rc, and Δ ¼ 10 Ω. (c)–(f) Spectra of the scattering
coefficients in units of the EIT bandwidth Γ ¼ Ω2

↑=γ
ffiffiffiffiffiffiffi
OD

p

[OD ¼ ðL=RcÞODc] and evolution of the wave functions for
a Gaussian input pulse with a duration Δt ¼ 10=Γ. The
shaded areas denote the noninteracting transmission. The dashed
and the solid lines in (d) and (f) are based on Eqs. (3) and (5),
respectively. The parameters are the same as in (b) (ODc ¼ 35)
except that we introduce a group velocity mismatch in (e) and
(f) by taking Ω↓=2π ¼ 16 MHz.
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jψ inðtÞi ¼
1ffiffiffiffiffi
n!

p
�Z

∞

−∞
dzhðt − zÞÊ†

↓ðzÞ
�
n
j0ij↑ia;

¼
ffiffiffiffiffi
n!

p Z

tn>���>t1

�Yn

i¼1

dtihðtiÞÊ†
↓ðt − tiÞ

�
j0ij↑ia;

where time ordering for the input photons is introduced
[45]. For coherent spin-exchange collisions governed by
Eq. (5), the total magnetization σ̂↑↑ þ

R
dzΨ̂†

↑ðzÞΨ̂↑ðzÞ ¼
1 is conserved, which implies that at most one of the
photons can be scattered to flip its spin state. At low photon
density, photons interact with the atom one after the other;
i.e., if a photon propagates through the medium without
exchanging its state with the atom, the next photon still has
a probability to do so; but once the exchange occurs, the
remaining photons will keep their spin states. In this way,
the output state is given by

jψðtÞi ¼ Tnjψ inðt − τÞi þ
ffiffiffiffiffi
n!

p Xn

m¼1

RTm−1jψmðtÞi; ð6Þ

where jψ inðt − τÞi corresponds to the situation in which no
spin-exchange occurs, while jψmðtÞi denotes the event that
the spin-exchange is between the control atom and the mth
photon in the pulse, given by

jψmðtÞi ¼
Z

tn>���>tmþ1

� Yn

i¼mþ1

dtihðtiÞÊ†
↓ðt − τ0 − tiÞ

�

×
Z

tmþ1

−∞
dtmhðtmÞÊ†

↑ðt − τ − tmÞ

×
Z

tm>���>t1

�Ym−1

i¼1

dtihðtiÞÊ†
↓ðt − τ0 − tiÞ

�
j0ij↓ia;

with τ and τ0 the EIT-induced delay time [39] for spin-up
and spin-down photons, respectively. In fact, the spin-
exchange collision here can be viewed as a heralded single-
photon subtractor: a single photon is subtracted from mode
Ê↓ and added to mode Ê↑, conditioned on the spin-flip of
the control atom. In contrast to previous schemes [46,47],
the single-photon is coherently extracted from the multi-
photon pulse here, so it simultaneously behaves as a single-
photon source [48,49].
Since the extracted single-photon and the remaining

n − 1 spin-down photons together constitute a pure state,
the performance of such a single-photon subtractor can be
measured by either part of the system. Tracing out n − 1

photons in mode Ê↓, the reduced density matrix operator
for the spin-up single-photon is ρ̂ ¼ R

dxdyρðx; yÞ×
Ê†
↑ðxÞj0ih0jÊ↑ðyÞ, with the density matrix element

ρðx; yÞ ¼ ρ̃ðt − τ − x; t − τ − yÞ and [50]

ρ̃ðx; yÞ ¼ njRj2hðxÞhðyÞ
�
jTj2

Z
minðx;yÞ

−∞
dzh2ðzÞ

þ T
Z

maxðx;yÞ

minðx;yÞ
dzh2ðzÞ þ

Z þ∞

maxðx;yÞ
dzh2ðzÞ

�
n−1

:

ð7Þ

The efficiency for scattering a single photon to spin-up
state is found to be η ¼ tr½ρ̂� ¼ 1 − jTj2n, and the purity of
this extracted single-photon is given by P ¼ tr½ρ̂2�=tr½ρ̂�2,
which has an analytical expression

P ¼ nð1þ TÞð1 − T2n−1Þ
ð2n − 1Þð1 − T2nÞ ; ð8Þ

if T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jRj2

p
eiθ is real (i.e., θ ¼ 0; π). For θ ¼ 0, this

result proves the fundamental trade-off between efficiency
and purity of the single-photon subtraction observed in
Ref. [24]: while the decrease of the single-photon exchange
rate jRj2 reduces the efficiency η, it yields a larger single-
photon purity P. The physical origin of this trade-off comes
from entanglement between the subtracted single-photon
and the remaining n − 1 photons. For a perfect exchange
jRj ¼ 1, only jψ1i survives in Eq. (6), so the timing for the
first photon in mode Ê↓ carries correlated information

about the photon in mode Ê↑. This entanglement results in
an impure spin-up photon with P ¼ n=ð2n − 1Þ, exactly
the case discussed in Ref. [45]. In contrast, for jRj ≪ 1
(T ≈ 1), each jψmi in Eq. (6) is almost equally weighted, so
the timing of the spin-up photon is uncorrelated with the
timings of the n − 1 spin-down photons, i.e., they are not
entangled. Therefore, the subtracted photon is almost pure
with ρ̃ðx; yÞ ∼ hðxÞhðyÞ and P ≈ 1. To verify the above
analysis, we perform numerical simulations for n ¼ 2
based on Eq. (5). As shown in Fig. 3, the existence of
this trade-off is largely confirmed and good agreement with
analytical predictions is observed.

FIG. 3. Purity and efficiency of the extracted photon. The dots
and the solid lines represent numerical (v↓Δt ¼ 20Rc) and
analytical results, respectively. The right figures show the
normalized density matrix jρðx; yÞj=η (brighter colors indicate
larger values). To assure θ ¼ 0, we set ϕ ¼ π=2 and Ω↓ > Ω↑.

PHYSICAL REVIEW LETTERS 125, 143601 (2020)

143601-4



The above analysis is universal for a wide class of single
photon subtractors in the literature [24,46–49], where
identical photons interact with the local system sequen-
tially: once the system changes the state of a photon, its
own state is changed as well and all subsequent photons are
protected from being scattered. As a result, the order of
arrival for the incoming identical photons determines the
output state. Although the universal trade-off in this type of
device prevents the implementation of a perfect single-
photon subtraction with η ¼ P ¼ 1 for arbitrary incoming
states, it remains possible to achieve high efficiency and
purity simultaneously for a large input photon number. To
demonstrate this, we consider the scattering of a coherent
input state e−jαj2=2

P
nðαn=

ffiffiffiffiffi
n!

p Þjniwith an optimal scatter-
ing rate jRoptj2 that gives η ¼ P. With such an optimization,
both purity and efficiency approach unity [shown in
Fig. 4(a), P ¼ η ≈ 1 − ðln jαj2Þ=4jαj2 for jαj2 ≫ 1] as
the mean photon number jαj2 increases, which improves
on the jRj ¼ 1 case discussed in Ref. [45] (η ¼ 1, P ¼ 0.5;
or η ¼ 0.69, P ¼ 1 after purification).
Finally, we emphasize that to achieve the optimal purity,

the phase of T ¼ jTjeiθ needs to be zero; i.e., photons
remaining in mode Ê↓ should acquire the same phase
irrespective of whether the spin exchange happens or
not. The monotonic decrease of purity [P ≈ ð1 − jTj2Þ=
2ð1 − jTj cos θÞ for jαj2 ≫ 1] with the phase mismatch
θ [Fig. 4(b)] can be understood as follows: the phase
ðm − 1Þθ imprinted on jψmi in Eq. (6) causes the phase
distribution of the spin-up photon strongly correlated with
the timing of the remaining photons. In the limit of jTj ≈ 1
and θ ¼ π, the purity P ≈ 1=ð2n − 1Þ is even worse than a
perfect exchange, although the probability distribution
ρ̃ðx; xÞ ∼ h2ðxÞ remains unaltered. Such a phase-matching
condition highlights the coherent feature of the single-
photon subtraction, which cannot be captured by the
Monte Carlo simulation used in Ref. [24].
In conclusion, we present a scheme to engineer spin-

exchange interactions between photons and a single atom,
and discuss the scattering dynamics for a single-photon as
well as a multiphoton input. Further studies can use some

recently developed techniques [51–54] to address the
interesting multiphoton scattering problem beyond the
low-photon-density regime, where collective effects will
come into play. The system can also be used to perform
quantum logic operations, such as single-photon optical
switching [55]. Besides facilitating quantum information
processing, the spin-exchange collision discussed here
opens a new avenue for the study of strong light-atom
interactions.
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