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We study the equation of state of symmetric nuclear matter at zero temperature over a wide range of
densities using two complementary theoretical approaches. At low densities, up to twice nuclear saturation
density, we compute the energy per particle based on modern nucleon-nucleon and three-nucleon
interactions derived within chiral effective field theory. For higher densities, we derive for the first time
constraints in a Fierz-complete setting directly based on quantum chromodynamics using functional
renormalization group techniques. We find remarkable consistency of the results obtained from both
approaches as they come together in density and the natural emergence of a maximum in the speed of sound
cS at supranuclear densities. The presence of this maximum appears tightly connected to the formation of a
diquark gap. Notably, this maximum is observed to exceed the asymptotic value c2S ¼ 1=3 while its exact
position in terms of the density cannot yet be determined conclusively.
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Introduction.—The theoretical understanding of the
equation of state (EOS) of dense matter has been one of
the main frontiers in nuclear physics in recent decades.
While the EOS of cold matter up to around nuclear
saturation density, n0 ¼ 0.16 fm−3, can be constrained
by properties of atomic nuclei [1–4], the composition
and properties of matter at supranuclear densities as it
exists, e.g., in the center of neutron stars are still open
questions. Recent breakthroughs like the first detection of
the gravitational wave signal of the neutron star merger
[5,6] as well as novel constraints on neutron star radii from
the NASA NICER mission [7–9] can significantly enhance
our theoretical understanding of neutron-rich matter under
extreme conditions. Combining information from these
ongoing efforts with existing observational data like precise
mass measurements of heavy neutron stars [10–13] or also
heavy ion collisions [14] can provide further constraints for
the EOS. However, all such measurements can only provide
indirect insight into the microscopic nature of matter at high
densities [15–17]. The present work aims to constrain
properties of symmetric nuclear matter from calculations
based on strong interactions with controlled uncertainties,
without taking into account electromagnetic or weak
interactions. This provides us with an insight into the
composition of dense matter which, of course, eventually
needs to be benchmarked against observational constraints.
Low-density regime.—At the fundamental level, the

strong interaction is governed by the quark-gluon dynamics
described by quantum chromodynamics (QCD). At nuclear
densities, the ground state is dominated by chiral symmetry

breaking, and calculations directly based on QCD become
very challenging. For this regime, chiral effective field
theory (EFT) represents a powerful framework for des-
cribing the nuclear dynamics and interactions within a
systematic expansion based on the low-energy degrees of
freedom, nucleons, and pions [18,19]. Substantial progress
has been achieved in recent years in deriving new nuclear
forces and computing the EOS microscopically based
on nucleon-nucleon (NN), three-nucleon (3N) and four-
nucleon interactions derived within chiral EFT [20–29], see
Ref. [30] for a recent review. In particular, in Ref. [29], we
presented an efficient framework to compute the energy of
nuclear matter at zero temperature within many-body
perturbation theory up to high orders in the many-body
expansion and for general proton fractions. It allows us to
include all contributions from two- and many-body forces
up to next-to-next-to-next-to-leading order (N3LO) and to
explore the connection of properties of matter and nuclei
[31]. In addition, in Ref. [21], a set of NN and 3N
interactions was fitted to few-body observables, where
all derived interactions led to good saturation properties
without adjustment of free parameters. In particular, one
interaction of this set was found to also correctly predict the
ground state energies of medium-mass nuclei up to 100Sn
[32,33]. In Figs. 1 and 2, we show the results for the
pressure and the speed of sound of symmetric nuclear
matter up to twice nuclear density based on the set of
interactions of Ref. [21] (individual blue lines) as well as
the interactions up to N3LO fitted to the empirical satu-
ration point of Ref. [29] (blue bands). The EFT uncertainty
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bands at N2LO (light-blue band) and N3LO (dark-blue
band) have been determined following the strategy of
Ref. [34] and represent the combined uncertainties
based on the results at the two cutoff scales
Λ ¼ 450 and 500 MeV (see also Ref. [29]).
Intermediate-density regime.—Compared to the nuclear

density regime, less is known about the ground state at
intermediate densities, i.e., the regime above the region
where calculations based on chiral EFT are applicable
and below the very high densities limit expected to be
governed, e.g., by the formation of a diquark gap [36–42],
or accessible by perturbative QCD (pQCD) at asymptotic
densities [43–47]. To study the intermediate-density
regime, we employ the functional renormalization group
(FRG) approach [48] which allows us to study this regime
from the Euclidean QCD action (see Refs. [49–51] for
reviews)

S ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ ψ̄ði=∂ þ ḡ=Aþ iγ0μÞψ
�
: ð1Þ

Here, ḡ is the bare gauge coupling and μ is the quark
chemical potential. The non-Abelian fields Aa

μ enter the
definition of the field-strength tensor Fa

μν and are associated
with the gluons. With respect to the quarks, we restrict
ourselves to two massless flavors in this work.
In the renormalization group (RG) flow, the quark-gluon

vertex in Eq. (1) induces quark self-interactions already at
the one-loop level via two-gluon exchange. This gives rise
to terms, e.g., of the following form in the quantum
effective action:

δΓ ¼
Z

d4xλ̄iðψ̄OiψÞ2; ð2Þ

where the operator Oi determines the color, flavor, and
Dirac structure of the vertex. We stress that the four-quark
couplings λ̄i are not free parameters but solely generated by
quark-gluon dynamics from first principles in our study.
This is an important difference to, e.g., Nambu-Jona-
Lasinio-type model studies where the four-quark couplings
are input parameters, or to RG studies [36,52] which
expand the effective degrees of freedom around the
Fermi surface in momentum space, thus, being difficult
to directly connect to the fundamental quark-gluon dynam-
ics and the RG flow of the gauge coupling. In this work, we
focus on the RG flow of pointlike projected four-quark
correlation functions Γð4Þ. To be specific, we define the
four-quark couplings associated with the vertex of the form
(2) as follows:

λ̄iðψ̄OiψÞ2 ¼ lim
pi→0

ψ̄αðp1Þψ̄ βðp2ÞΓð4Þ;αβγδ
O

× ðp1; p2; p3; p4Þψγðp3Þψδðp4Þ: ð3Þ
Here, α, β, γ, δ denote collective indices for color, flavor, and
Dirac structures. Note that this zero-momentum projection

does not represent a Silver-Blaze-symmetric point [53–55],
but it matches the definition of four-quark couplings in
conventional low-energy models [56–58] and BCS-type
models [59–62]. The couplings resulting from our definition
(3) depend on the chemical potential and the RG scale.
Although this scale dependence implies that part of the
momentum-dependent information is still taken into account
in our RG analysis in an effective manner [63], the pointlike
limit ignores relevant information of four-quark correlation
functions. For example, bound-state information is encoded
in the momentum structure of these correlation functions.
Therefore, the pointlike approximation only allows us to
study the symmetric high-energy regime [51]. The sym-
metry-broken low-energy regime is not accessible in this
way. For our present purposes, however, this is still sufficient
as it enables us to study the approach toward the symmetry-
broken low-energy regime, as indicated by rapidly growing
four-quark couplings.
In general, symmetry breaking is ultimately triggered by

a specific four-quark channel approaching criticality as
indicated by a divergence of the corresponding coupling.
Such a seeming Landau-pole-type behavior of four-quark
couplings can be traced back to the formation of con-
densates as they can be shown to be proportional to the
inverse mass parameter of a Ginzburg-Landau effective
potential for the order parameters in a (partially) bosonized
formulation, λ ∼ 1=m2, see Refs. [51,64,65]. On the one
hand, this implies that, if the size of all four-quark
couplings is found to be bounded, the system stays in
the symmetric regime [51,63,66–68]. On the other hand,
the observation of a rapidly growing four-quark coupling in
a specific regime may be considered as an indicator that the
order-parameter potential develops a nonzero ground-state
expectation value in the direction associated with a specific
four-quark channel. The nontrivial assumption entering our
analysis of the EOS below is then that it is possible to relate
the dominance pattern of the four-quark couplings to the
symmetry-breaking pattern in terms of condensates, see
Refs. [55,63,69,70] for a detailed discussion. For example,
in the zero-density limit, it has indeed been found that the
scalar-pseudoscalar channel is the most dominant channel
[71,72], and a corresponding condensate is formed [72,73]
governing the low-energy dynamics.
When the baryon chemical potential is varied, it is

reasonable to expect that the symmetry-breaking pat-
terns associated with the various four-quark channels
change. More specifically, channels other than the
scalar-pseudoscalar channel may become relevant. In gen-
eral, the most dominant channel can be identified by
requiring that the modulus of the coupling of this channel
is greater than the ones of the other four-quark couplings.
Such an analysis then naturally requires us to include all
linearly independent four-quark interactions permitted by the
SUðNcÞ ⊗ SULð2Þ ⊗ SURð2Þ ⊗ UVð1Þ symmetry. Taking
into account the explicit breaking of Poincaré and charge-
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conjugation invariance at finite density, we end up with a
Fierz-complete basis set composed of ten channels in the
pointlike limit [69]. All other channels are related to this
minimal basis by means of Fierz transformations.
Introducing the dimensionless renormalized four-quark

couplings λi ¼ k2λ̄i with k being the RG scale, the β
functions for these couplings can be written in the follow-
ing form:

k∂kλi ¼ 2λi − λjA
ðiÞ
jk λk − BðiÞ

j λjg2 − CðiÞg4; ð4Þ
where i refers to the elements of our Fierz-complete basis of
four-quark couplings. The coefficients A (purely fermionic
loop), B (triangle diagram), and C (two-gluon exchange)
depend on the quark chemical potential. Here, we have
dropped an implicit dependence of these loop diagrams on
the wave function renormalization factors of the quarks and
the gluons as they have been found to be subleading in the
symmetric regime [66–68,74,75]. For the computation of
the flow equations (4), we have then made use of existing
software packages [76,77]. For details, we refer the reader
to Ref. [78]. The corresponding flow equations for the
purely fermionic part as parametrized by the matrices AðiÞ
can be found in Ref. [69], including a discussion of the
regularization scheme also underlying this work.
In our present study, the RG flow of the gauge sector

enters the flow equations of the four-quark couplings only
via the running of the strong coupling. In line with our
approximations in the computation of the four-quark
couplings, we only employ the one-loop running of the
strong coupling for two quark flavors. However, we have
checked that our main results (e.g., the existence of a
maximum in the speed of sound) persist even if we employ

running couplings taking into account higher-order effects
[67,68,79]. Note that, from the analysis of Ward-Takahashi
identities, it follows that the back reaction of the four-quark
couplings on the strong coupling is negligible, provided the
flow of the four-quark couplings is governed by the
presence of fixed points [75], as is the case in the symmetric
regime [66–68].
Using the set of flow equations defined by Eq. (4), we

can study the RG flow of the four-quark couplings
and analyze the emerging symmetry breaking patterns.
At high-energy scales, the RG flow generates quark self-
interactions λi ∼ g4 via the last term in Eq. (4). Following
the RG flow toward the low-energy regime, we observe that
the strength of the four-quark couplings relative to each
other depends on the dimensionless quark chemical poten-
tial μ. More specifically, toward lower density, the most
dominant channel in the low-energy regime eventually
turns out to be the scalar-pseudoscalar channel, in line with
phenomenological expectations. As also observed in
Ref. [69], the dominance pattern changes when the dimen-
sionless chemical potential μ=k becomes sufficiently large.
Then, the diquark channel ∼ðiψ̄γ5τ2TAψCÞðiψ̄Cγ5τ2TAψÞ
(where τ2 is the second antisymmetric Pauli matrix, and it is
only summed over the antisymmetric color generators TA)
takes over the role of the most dominant channel, sug-
gesting the formation of a chirally symmetric diquark
condensate associated with pairing of the two-flavor
color-superconductor type [37–42]. Note that, in case of
electromagnetic neutrality and β equilibrium, the inclusion
of strange quarks also entails different pairing patterns such
as the color-flavor-locked pairing present at least at very
high densities [80].

FIG. 1. Left panel: Pressure P of symmetric nuclear matter normalized by the pressure of the free quark gas Pfree as a function of the
baryon density n=n0 in units of the nuclear saturation density as obtained from chiral EFT, FRG, including results from an
approximation without taking into account a diquark gap (FRG, approx.: no diquark gap), and pQCD, see main text for details. Right
panel: Speed of sound squared as a function of the baryon density in units of the nuclear saturation density as derived from the pressure
shown in the left panel. The inset shows the estimated peak position and height for different transition scales Λ0 as obtained by
increasing the chemical potential μ beyond Λ0.
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For a computation of the EOS, it is required to solve the
RG flow down to the long-range limit k → 0. As discussed
above, however, this requires us to go beyond the pointlike
limit and resolve the momentum dependencies of the
corresponding vertices. For example, this can be conven-
iently done by employing so-called dynamical hadroniza-
tion techniques [49,65,74,81], see, e.g., Refs. [72,73,79,82]
for their application to QCD. These techniques effectively
implement continuous Hubbard-Stratonovich transforma-
tions of four-quark interactions in the RG flow. In the
present work, we do not employ continuous transforma-
tions but essentially perform them at a given scale Λ0 [83].
To be specific, for any given μ, we follow the RG flow of
the four-quark couplings from the perturbative high-energy
regime down to the scale Λ0 at which we extract the
strength of the four-quark couplings and use them to fix the
couplings of an ansatz describing the dynamics at scales
k < Λ0. Since we find the scalar-pseudoscalar channel to be
most dominant at low densities and the diquark channel to
be most dominant at intermediate and high densities, in
accordance with the findings in Ref. [52], we parametrize
the low-energy regime associated with scales k ≤ Λ0 by the
Hubbard-Stratonovich transforms of these two couplings
cast into the form of a quark-meson-diquark-model trun-
cation. From the latter, we then compute the pressure via a
minimization of the corresponding Ginzburg-Landau-type
effective potential [84] spanned by the aforementioned two
Hubbard-Stratonovich fields in an RG-consistent way, see
Ref. [85] for details.
To set the scale, we fix the actual value of the scalar-

pseudoscalar coupling of the low-energy sector by the
constituent quark mass in the vacuum limit. The value of
the diquark coupling relative to the scalar-pseudoscalar
coupling is then fixed by the corresponding ratio obtained
from our RG flow study of gluon-induced four-quark
interactions evaluated at the scale Λ0. Because the
gluon-induced four-quark interactions depend on the quark

chemical potential, this renders the couplings of the low-
energy regime μ dependent. Finally, to estimate the
uncertainties arising from the presence of the scale Λ0

describing the “transition" in the effective degrees of
freedom, we vary this scale from Λ0 ¼ 450…600 MeV.
In the left panel of Fig. 1, we show our results for the

EOS (light-red band) as a function of the baryon density in
units of the nuclear saturation density. The band has been
obtained from a variation of the scale Λ0 and a variation of
the value of the gauge coupling within experimental errors
at the initial RG scale [86]. The different line types within
the light-red band depict three representative EOSs asso-
ciated with Λ0 ¼ 450; 500; 600 MeV (from left to right).
At lower densities, we observe that our results for the
pressure as obtained from our many-body framework based
on chiral EFT interactions are remarkably consistent with
those obtained from our FRG analysis at intermediate
densities. However, our present approximation is not
capable of resolving the exact position of any chiral
transition or crossover, as we do not observe a clear
dominance pattern in the spectrum of the four-quark
couplings in this regime. The extent of the light-red band
at high densities is set by the constraint μ ≤ Λ0. With
respect to the high-density limit, we note that the results
from our FRG studies are found to approach those from
pQCD calculations (light-green band) [46,47].
In the right panel of Fig. 1, we present the square of the

speed of sound as a function of the baryon density n as
derived from the pressure shown in the left panel. The light-
red band is associated with the results from our FRG
studies taking diquark condensation into account. Its extent
to high densities is again constrained by the transition scale
Λ0. Irrespective of this limitation of our present study, a
softening of the EOS at high densities may, in general, be
expected from a perturbative standpoint as associated with
an evaluation of, e.g., the four-quark couplings at the
characteristic scale μ ∼ nð1=3Þ. In fact, at large chemical
potential, the four-quark couplings λi then naturally
become small owing to asymptotic freedom, λi ∼ g4, see
also Eq. (4). Even more, according to pQCD studies [43–
47], we expect the speed of sound to approach c2s ¼ 1=3
(noninteracting limit) from below at asymptotically high
densities. From this and our observation that the pressure
exceeds its asymptotic value already for chemical potentials
well below the scale Λ0, we infer the existence of a
maximum in the speed of sound. In order to also give
an estimate for the position and height of the maximum, we
may increase the chemical potential μ beyond Λ0 in our
calculations. The inset of this figure shows the resulting
estimate, exhibiting a robust height of the maximum but
with a large uncertainty of its position. At high density,
n=n0 > 75, we again show results from pQCD calcula-
tions. Note that the computation of the speed of sound from
the corresponding data for the pressure in this high-density
branch becomes numerically unstable for n=n0 ≲ 70.

FIG. 2. Pressure of symmetric nuclear matter as obtained from
chiral EFT, FRG, and pQCD, as in Fig. 1, in comparison with
different models (see main text and also Ref. [35]).
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Besides pressure and speed of sound, the diquark gapΔ is
of great relevance for dense matter physics [61]. In our
present study, we observe that Δ increases within the
considered density range n=n0 ≈ 2…15, exhibiting a
flattening toward higher densities. More specifically, we find
thatΔ is greater than thevalues reported inRef. [38].However,
the values for Δ from both studies show a remarkable
agreement at lower densities. For n=n0 ≈ 5, for example,
we extract Δ ≈ 70…160 MeV from Ref. [38] and Δ ≈
140…230 MeV (depending on Λ0) from our present study.
In Fig. 2, we next compare our results for the pressure

with different models. These include relativistic mean-field
calculations, such as NLρ and NLρδ [87], DD, D3C and
DD-F [88] as well as KVR and KVOR [89] (see also
Ref. [35]). In addition, we show results of Dirac-Brueckner
Hartree-Fock calculations (DBHF) [90] and from a typical
low-energy model (LEM) [57,85]. At densities up to
around twice nuclear saturation density, the different
models are compatible with the chiral EFT uncertainty
bands at N2LO (but not all at N3LO). At higher densities,
however, the pressure obtained from most models is found
to be significantly higher than our results.
High-density regime.—In the regime of very high den-

sities, the EOS can be calculated using perturbative methods
[43–47] owing to the fact that the dynamics is dominated by
modes with momenta jpj ∼ μ which effectively renders the
QCD coupling g2=4π small. Although the ground state is
expected to be governed by diquark condensation [36–38,
40–42], calculations that do not include condensation effects
are reliable, provided that the chemical potential is much
larger than the scale set by the diquark gap.
In our RG study, the gluon-induced four-quark inter-

actions serve as proxies for the various order parameters.
The analysis of their RG flows indeed indicate that the
ground state is governed by spontaneous symmetry break-
ing, even at high densities. This can be effectively described
by a transition in the relevant degrees of freedom at a finite
scale. In order to make contact with perturbative calcu-
lations, we drop the running of the four-quark interactions
and restrict ourselves to the running of the quark and gluon
wave function renormalization factors at leading order in
the derivative expansion. From the latter, we obtain dressed
quark and gluon propagators which are then used to
compute the pressure. In this case, we find that the RG
flow of the pressure can be followed from high-energy
scales down to the deep infrared limit without encountering
any pairing instabilities as associated with spontaneous
symmetry breaking. In Fig. 1, we show our results for the
pressure and the speed of sound from this calculation
labeled “no diquark gap. We observe very good agreement
with recent perturbative calculations [46,47]. The width of
the orange FRG band illustrates the uncertainty arising from
a variation of the regularization scheme and a variation of the
running gauge coupling within the experimental error bars
at the τ-mass scale [86]. Following the pressure toward
smaller densities, we observe that our results for the

intermediate-density and high-density regime are consistent.
For the appearance of a maximum in the speed of sound,
however, we find that the inclusion of condensation effects in
the regime n=n0 ≲ 30 is crucial, which also provides the
necessary decrease of the pressure in order to connect the
low-density with the high-density regime.
Conclusions and outlook.—In this Letter we have pre-

sented first results for the EOS of symmetric nuclear matter
at zero temperature over a wide density range starting from
QCD. At low densities we performed calculations based on a
set of recently developed chiral NN and 3N interactions,
while for densities beyond three times saturation density, we
computed the EOS within an FRG framework directly based
on the fundamental quark-gluon dynamics. Even though
the present approximations underlying both studies break
down at an intermediate-density window, the results show a
remarkable consistency (in particular for the pressure) and
indicate that they can be combined via simple extrapolations.
At intermediate to high densities, our study suggests that the
ground state is governed by diquark dynamics. From a
combined analysis of our results and those from perturbative
studies, we infer the existence of a maximum in the speed of
sound. Although the exact position of this maximum in
terms of the density cannot be determined conclusively in
our present study, its height appears very robust. Note that
the existence of a maximum for the speed of sound has also
been demonstrated for neutron-rich matter based on con-
straints from neutron star masses [91–94]. Ignoring the
diquark gap, our FRG calculations are then found to be in
good agreement with well-known results from pQCD
calculations at very high densities. A generalization of the
presented framework to general proton fractions will give us
access to the EOS in the neutron-rich regime, which is
relevant for astrophysical applications. Furthermore, the
FRG approach is already formulated for general temper-
atures. An extension of our chiral EFT calculations at low
densities to finite temperatures will also allow us to study the
temperature dependence of the EOS over a wide density
range based on strong interactions.

This work is supported in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation)—Projektnummer No. 279384907–SFB 1245,
the U.S. Department of Energy, the Office of Science, the
Office of Nuclear Physics, and SciDAC under Awards
No. DE_SC00046548 and No. DE_AC02_05CH11231.
J. B. acknowledges support by the DFG under Grant
No. BR 4005/4-1 (Heisenberg program) and by HIC for
FAIR within the LOEWE program of the State of Hesse. C.
D. acknowledges support by the Alexander von Humboldt
Foundation through a Feodor-Lynen Fellowship. Compu-
tational resources have been provided by the Lichtenberg
high performance computer of the TU Darmstadt. J. B.,
M. L., andM. P.would like to thank the othermembers of the
fQCD collaboration for discussions and providing data for
cross checks.

PHYSICAL REVIEW LETTERS 125, 142502 (2020)

142502-5



[1] M. B. Tsang et al., Phys. Rev. C 86, 015803 (2012).
[2] J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013).
[3] K. Hebeler, J. D. Holt, J. Menendez, and A. Schwenk,

Annu. Rev. Nucl. Part. Sci. 65, 457 (2015).
[4] X. Roca-Maza and N. Paar, Prog. Part. Nucl. Phys. 101, 96

(2018).
[5] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Phys. Rev. Lett. 119, 161101 (2017).
[6] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Phys. Rev. X 9, 011001 (2019).
[7] T. E. Riley, A. L. Watts, S. Bogdanov, P. S. Ray, R. M.

Ludlam, S. Guillot, Z. Arzoumanian, C. L. Baker, A. V.
Bilous, D. Chakrabarty, K. C. Gendreau, A. K. Harding, W.
C. G. Ho, J. M. Lattimer, S. M. Morsink, and T. E. Stroh-
mayer, Astrophys. J. Lett. 887, L21 (2019).

[8] M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019).
[9] G. Raaijmakers, T. E. Riley, A. L. Watts, S. K. Greif, S. M.

Morsink, K. Hebeler, A. Schwenk, T. Hinderer, S. Nissanke,
S. Guillot, Z. Arzoumanian, S. Bogdanov, D. Chakrabarty,
K. C. Gendreau, W. C. G. Ho, J. M. Lattimer, R. M. Ludlam,
and M. T. Wolff, Astrophys. J. Lett. 887, L22 (2019).

[10] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J.
Hessels, Nature (London) 467, 1081 (2010).

[11] J. Antoniadis et al., Science 340, 448 (2013).
[12] E. Fonseca et al., Astrophys. J. 832, 167 (2016).
[13] H. T. Cromartie et al., Nat. Astron. 4, 72 (2020).
[14] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298,

1592 (2002).
[15] A.W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J.

722, 33 (2010).
[16] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[17] F. Özel and P. Freire, Annu. Rev. Astron. Astrophys. 54, 401

(2016).
[18] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner, Rev.

Mod. Phys. 81, 1773 (2009).
[19] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[20] K. Hebeler and A. Schwenk, Phys. Rev. C 82, 014314

(2010).
[21] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A.

Schwenk, Phys. Rev. C 83, 031301(R) (2011).
[22] I. Tews, T. Krüger, K. Hebeler, and A. Schwenk, Phys. Rev.

Lett. 110, 032504 (2013).
[23] G. Hagen, T. Papenbrock, A. Ekström, K. A. Wendt,

G. Baardsen, S. Gandolfi, M. Hjorth-Jensen, and C. J.
Horowitz, Phys. Rev. C 89, 014319 (2014).

[24] A. Carbone, A. Polls, and A. Rios, Phys. Rev. C 88, 044302
(2013).

[25] L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt, L. E.
Marcucci, and F. Sammarruca, Phys. Rev. C 89, 044321
(2014).

[26] C. Wellenhofer, J. W. Holt, and N. Kaiser, Phys. Rev. C 92,
015801 (2015).

[27] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis,
K. E. Schmidt, and A. Schwenk, Phys. Rev. Lett. 116,
062501 (2016).

[28] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. C 93,
054314 (2016).

[29] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. Lett.
122, 042501 (2019).

[30] K. Hebeler, arXiv:2002.09548.
[31] J. Hoppe, C. Drischler, K. Hebeler, A. Schwenk, and J.

Simonis, Phys. Rev. C 100, 024318 (2019).
[32] J. Simonis, S. R. Stroberg, K. Hebeler, J. D. Holt, and A.

Schwenk, Phys. Rev. C 96, 014303 (2017).
[33] T. D. Morris, J. Simonis, S. R. Stroberg, C. Stumpf, G.

Hagen, J. D. Holt, G. R. Jansen, T. Papenbrock, R. Roth, and
A. Schwenk, Phys. Rev. Lett. 120, 152503 (2018).

[34] E. Epelbaum, H. Krebs, and U.-G. Meißner, Eur. Phys. J. A
51, 53 (2015).

[35] T. Klähn et al., Phys. Rev. C 74, 035802 (2006).
[36] D. T. Son, Phys. Rev. D 59, 094019 (1999).
[37] R. Rapp, T. Schäfer, E. V. Shuryak, and M. Velkovsky, Phys.

Rev. Lett. 81, 53 (1998).
[38] M. G. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B

422, 247 (1998).
[39] J. Berges and K. Rajagopal, Nucl. Phys. B538, 215 (1999).
[40] R. D. Pisarski and D. H. Rischke, Phys. Rev. D 61, 074017

(2000).
[41] R. D. Pisarski and D. H. Rischke, Phys. Rev. D 61, 051501

(R) (2000).
[42] T. Schäfer and F. Wilczek, Phys. Rev. D 60, 114033 (1999).
[43] B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1130

(1977).
[44] B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1169

(1977).
[45] V. Baluni, Phys. Rev. D 17, 2092 (1978).
[46] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev. D

81, 105021 (2010).
[47] T. Gorda, A. Kurkela, P. Romatschke, M. Säppi, and A.

Vuorinen, Phys. Rev. Lett. 121, 202701 (2018).
[48] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[49] J. M. Pawlowski, Ann. Phys. (Amsterdam) 322, 2831

(2007).
[50] H. Gies, Lect. Notes Phys. 852, 287 (2012).
[51] J. Braun, J. Phys. G 39, 033001 (2012).
[52] T. Schäfer and F. Wilczek, Phys. Lett. B 450, 325 (1999).
[53] N. Khan, J. M. Pawlowski, F. Rennecke, and M.M. Scherer,

arXiv:1512.03673.
[54] W.-j. Fu, J. M. Pawlowski, F. Rennecke, and B.-J. Schaefer,

Phys. Rev. D 94, 116020 (2016).
[55] J. Braun, M. Leonhardt, and M. Pospiech, Phys. Rev. D 96,

076003 (2017).
[56] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[57] M. Buballa, Phys. Rep. 407, 205 (2005).
[58] K. Fukushima, J. Phys. G 39, 013101 (2012).
[59] D. Bailin and A. Love, Phys. Rep. 107, 325 (1984).
[60] A. Altland and B. Simons, Condensed Matter Field Theory

(Cambridge University Press, 2006).
[61] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,

Rev. Mod. Phys. 80, 1455 (2008).
[62] R. Anglani, R. Casalbuoni, M. Ciminale, N. Ippolito, R.

Gatto, M. Mannarelli, and M. Ruggieri, Rev. Mod. Phys. 86,
509 (2014).

[63] J. Braun, H. Gies, L. Janssen, and D. Roscher, Phys. Rev. D
90, 036002 (2014).

[64] U. Ellwanger and C. Wetterich, Nucl. Phys. B423, 137
(1994).

[65] H. Gies and C. Wetterich, Phys. Rev. D 65, 065001 (2002).
[66] H. Gies and J. Jaeckel, Eur. Phys. J. C 46, 433 (2006).

PHYSICAL REVIEW LETTERS 125, 142502 (2020)

142502-6

https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1088/0004-637X/771/1/51
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1016/j.ppnp.2018.04.001
https://doi.org/10.1016/j.ppnp.2018.04.001
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab451a
https://doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.3847/0004-637X/832/2/167
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1088/0004-637X/722/1/33
https://doi.org/10.1088/0004-637X/722/1/33
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevC.82.014314
https://doi.org/10.1103/PhysRevC.82.014314
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevLett.110.032504
https://doi.org/10.1103/PhysRevLett.110.032504
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.89.044321
https://doi.org/10.1103/PhysRevC.89.044321
https://doi.org/10.1103/PhysRevC.92.015801
https://doi.org/10.1103/PhysRevC.92.015801
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevLett.122.042501
https://doi.org/10.1103/PhysRevLett.122.042501
https://arXiv.org/abs/2002.09548
https://doi.org/10.1103/PhysRevC.100.024318
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevLett.120.152503
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1103/PhysRevC.74.035802
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevLett.81.53
https://doi.org/10.1103/PhysRevLett.81.53
https://doi.org/10.1016/S0370-2693(98)00051-3
https://doi.org/10.1016/S0370-2693(98)00051-3
https://doi.org/10.1016/S0550-3213(98)00620-8
https://doi.org/10.1103/PhysRevD.61.074017
https://doi.org/10.1103/PhysRevD.61.074017
https://doi.org/10.1103/PhysRevD.61.051501
https://doi.org/10.1103/PhysRevD.61.051501
https://doi.org/10.1103/PhysRevD.60.114033
https://doi.org/10.1103/PhysRevD.16.1130
https://doi.org/10.1103/PhysRevD.16.1130
https://doi.org/10.1103/PhysRevD.16.1169
https://doi.org/10.1103/PhysRevD.16.1169
https://doi.org/10.1103/PhysRevD.17.2092
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevLett.121.202701
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1007/978-3-642-27320-9
https://doi.org/10.1088/0954-3899/39/3/033001
https://doi.org/10.1016/S0370-2693(99)00162-8
https://arXiv.org/abs/1512.03673
https://doi.org/10.1103/PhysRevD.94.116020
https://doi.org/10.1103/PhysRevD.96.076003
https://doi.org/10.1103/PhysRevD.96.076003
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1088/0954-3899/39/1/013101
https://doi.org/10.1016/0370-1573(84)90145-5
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1103/PhysRevD.90.036002
https://doi.org/10.1103/PhysRevD.90.036002
https://doi.org/10.1016/0550-3213(94)90568-1
https://doi.org/10.1016/0550-3213(94)90568-1
https://doi.org/10.1103/PhysRevD.65.065001
https://doi.org/10.1140/epjc/s2006-02475-0


[67] J. Braun and H. Gies, Phys. Lett. B 645, 53 (2007).
[68] J. Braun and H. Gies, J. High Energy Phys. 06 (2006) 024.
[69] J. Braun, M. Leonhardt, and M. Pospiech, Phys. Rev. D 97,

076010 (2018).
[70] D. Roscher, N. Gneist, M. M. Scherer, S. Trebst, and S.

Diehl, Phys. Rev. B 100, 125130 (2019).
[71] J. Braun, Ph.D. thesis, Heidelberg University, 2006.
[72] M. Mitter, J. M. Pawlowski, and N. Strodthoff, Phys. Rev. D

91, 054035 (2015).
[73] A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff,

Phys. Rev. D 97, 054006 (2018).
[74] H. Gies and C. Wetterich, Phys. Rev. D 69, 025001

(2004).
[75] H. Gies, J. Jaeckel, and C. Wetterich, Phys. Rev. D 69,

105008 (2004).
[76] M. Q. Huber and J. Braun, Comput. Phys. Commun. 183,

1290 (2012).
[77] A. K. Cyrol, M. Mitter, and N. Strodthoff, Comput. Phys.

Commun. 219, 346 (2017).
[78] J. Braun, M. Leonhardt, and M. Pospiech, Phys. Rev. D 101,

036004 (2020).
[79] J. Braun, L. Fister, J. M. Pawlowski, and F. Rennecke, Phys.

Rev. D 94, 034016 (2016).
[80] M. G. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.

B537, 443 (1999).

[81] S. Floerchinger and C. Wetterich, Phys. Lett. B 680, 371
(2009).

[82] J. Braun, Eur. Phys. J. C 64, 459 (2009).
[83] P. Springer, J. Braun, S. Rechenberger, and F. Rennecke,

EPJ Web Conf. 137, 03022 (2017).
[84] W.-j. Fu, J. M. Pawlowski, and F. Rennecke, SciPost Phys.

Core 2, 002 (2020).
[85] J. Braun, M. Leonhardt, and J. M. Pawlowski, SciPost Phys.

6, 056 (2019).
[86] S. Bethke, Eur. Phys. J. C 64, 689 (2009).
[87] B. Liu, V. Greco, V. Baran, M. Colonna, and M. Di Toro,

Phys. Rev. C 65, 045201 (2002).
[88] S. Typel, Phys. Rev. C 71, 064301 (2005).
[89] E. E. Kolomeitsev and D. N. Voskresensky, Nucl. Phys.

A759, 373 (2005).
[90] E. N. E. van Dalen, C. Fuchs, and A. Faessler, Phys. Rev. C

72, 065803 (2005).
[91] P. Bedaque and A.W. Steiner, Phys. Rev. Lett. 114, 031103

(2015).
[92] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys. J.

860, 149 (2018).
[93] S. K. Greif, G. Raaijmakers, K. Hebeler, A. Schwenk, and

A. L. Watts, Mon. Not. R. Astron. Soc. 485, 5363 (2019).
[94] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A.

Vuorinen, Nat. Phys. 16, 907 (2020).

PHYSICAL REVIEW LETTERS 125, 142502 (2020)

142502-7

https://doi.org/10.1016/j.physletb.2006.11.059
https://doi.org/10.1088/1126-6708/2006/06/024
https://doi.org/10.1103/PhysRevD.97.076010
https://doi.org/10.1103/PhysRevD.97.076010
https://doi.org/10.1103/PhysRevB.100.125130
https://doi.org/10.1103/PhysRevD.91.054035
https://doi.org/10.1103/PhysRevD.91.054035
https://doi.org/10.1103/PhysRevD.97.054006
https://doi.org/10.1103/PhysRevD.69.025001
https://doi.org/10.1103/PhysRevD.69.025001
https://doi.org/10.1103/PhysRevD.69.105008
https://doi.org/10.1103/PhysRevD.69.105008
https://doi.org/10.1016/j.cpc.2012.01.014
https://doi.org/10.1016/j.cpc.2012.01.014
https://doi.org/10.1016/j.cpc.2017.05.024
https://doi.org/10.1016/j.cpc.2017.05.024
https://doi.org/10.1103/PhysRevD.101.036004
https://doi.org/10.1103/PhysRevD.101.036004
https://doi.org/10.1103/PhysRevD.94.034016
https://doi.org/10.1103/PhysRevD.94.034016
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1016/j.physletb.2009.09.014
https://doi.org/10.1016/j.physletb.2009.09.014
https://doi.org/10.1140/epjc/s10052-009-1136-6
https://doi.org/10.1051/epjconf/201713703022
https://doi.org/10.21468/SciPostPhysCore.2.1.002
https://doi.org/10.21468/SciPostPhysCore.2.1.002
https://doi.org/10.21468/SciPostPhys.6.5.056
https://doi.org/10.21468/SciPostPhys.6.5.056
https://doi.org/10.1140/epjc/s10052-009-1173-1
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.71.064301
https://doi.org/10.1016/j.nuclphysa.2005.05.154
https://doi.org/10.1016/j.nuclphysa.2005.05.154
https://doi.org/10.1103/PhysRevC.72.065803
https://doi.org/10.1103/PhysRevC.72.065803
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.1093/mnras/stz654
https://doi.org/10.1038/s41567-020-0914-9

