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The recent RIKEN experiment on the quenched gA in the superallowed Gamow-Teller transition from
100Sn indicates the role of scale anomaly encoded in the anomalous dimension β0 of the gluonic stress tensor
Tr G2

μν. This observation provides support to the notion of hidden scale symmetry emerging by strong
nuclear correlations with an infrared (IR) fixed point realized—in the chiral limit—in the Nambu-
Goldstone mode. We suggest there is an analogy in the way scale symmetry manifests in a nuclear medium
to the continuity from the unitarity limit at low density (in light nuclei) to the dilaton limit at high density
(in compact stars). In between the limits, say, at normal nuclear matter density, the symmetry is not visible,
hence hidden.
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Introduction.—There is a long-standing “mystery” last-
ing more than four decades [1] as to why the Gamow-Teller
(GT) transition in the simple shell model in nuclei requires
a quenching factor q ∼ ð0.75–0.80Þ multiplying the axial
coupling constant gfreeA ¼ 1.276 which would make geffA →
1.0 (see, e.g., Ref. [2] for extensive up-to-date reviews).
The standard nuclear β decay process typically involves a
superallowed transition with zero momentum transfer, so it
was natural to associate geffA ≃ 1 with something more
fundamental than standard nuclear many-body interactions,
such as basic renormalization due to the vacuum change
induced by the nuclear medium. That the effective geffA
involving a nearly conserved axial current is near unity
reminded one—falsely as is now understood—of the
conservation of vector current (CVC) hypothesis where
gV ¼ 1. The question then arose as to whether this constant
geffA near 1 could signal certain thus-far unrecognized
intrinsic properties of the underlying theory currently
accepted, QCD, or just a coincidental outcome arising
entirely from mundane strong nuclear correlations or from
a combination of both fundamental and mundane. This is
an important question, not just for nuclear physics but also
for going beyond the standard model, given that the GT
matrix element figures importantly in neutrinoless double
beta (0νββ) decays involving non-negligible momentum
transfers, hence not superallowed.
We discuss in this Letter how the quenching of gA in

nuclei and dense matter reveals the way scale symmetry,
hidden in the vacuum in QCD, manifests through strong
nuclear correlations and make a conjecture on its implica-
tion on the IR fixed-point structure of QCD.
The approach most appropriate to address this issue is

effective field theories (EFTs) “modeling” QCD. The

scheme currently adopted by most of the theorists in
nuclear physics resorts to a cutoff ∼ð400–500Þ MeV,
giving what’s now established as the standard chiral
effective field theory (SχEFT for short) where only the
nucleons and pions figure as the relevant degrees of
freedom. As described in great detail in Ref. [3], we find
it far more powerful and predictive to resort to a higher
cutoff, ≳700 MeV, in particular for going to high densities
relevant to massive compact stars. The relevant degrees of
freedom with such a cutoff are the lowest-lying vector
mesons Vμ ¼ ðρ;ωÞ with mass ≳700 MeV possessing
hidden local symmetry (HLS) and a scalar meson with
mass ∼600 MeV denoted χ as a dilaton—pseudo-Nambu-
Goldstone boson—of broken scale symmetry. The model
consisting of Vμ and χ together with the nucleons
constructed in consistency with both scale and chiral
symmetries will be referred to as generalized scale-chiral
EFT (GσEFT). It has been established that this GσEFT in
what is referred to as a “leading order scale symmetry
(LOSS)” approximation is surprisingly successful, with
very few parameters, for describing not only nuclear matter
at the equilibrium density n0 ≃ 0.16 fm−3 but also the
compact-star matter at n ∼ ð5–7Þn0 [3].
In the same LOSS approximation, it has been shown that

the quenching factor in geffA ≈ 1 is given predominantly, if
not entirely, by standard nuclear correlations, with little
corrections from intrinsic QCD effects. (These include
multibody meson-exchange currents that are counted as
higher-order corrections in SχEFT.) Any significant
deviation from geffA ≈ 1 would then have to be considered
as a signal for scale-symmetry (explicit) breaking, a
quantum anomaly, in terms of the anomalous dimension
β0 of the gluonic stress tensor Tr G2

μν. This issue of possible
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deviation from geffA ≈ 1 becomes particularly relevant
and poignant in nuclear physics—and possibly in 0νββ
processes—due to upcoming precisely measured GT
transitions in doubly magic nuclei where the “extreme
single particle shell model (ESPM)” is applicable. This will
be the principal issue treated in this Letter.
What does nature say?.—We first summarize what we

consider to be a relevant global indication in the observed
GT transitions. For this we arbitrarily consider two nuclear
mass regions: A≲ 60 (light) and A > 60 (heavy). Among
the many available, we resort to Ref. [2].
In nuclei up to A ∼ 60, geffA in the shell model comes out

to be

geffA ¼ qlightgfreeA ≈ 0.98 − 1.18 ð1Þ

with gfreeA ¼ 1.276 given by the neutron decay in matter-free
vacuum. For reasons clarified later, we simply give only
the relevant ranges, eschewing error bars, in theoretical
estimates. In the range q ¼ 0.76–0.93 implied by Eq. (1),
let us pick what gives geffA ≈ 1

qlight ≈ 0.78: ð2Þ

As the mass number goes up above A ∼ 60, it is seen that
the quenching factor tends to decrease to q ∼ 0.5 for,
e.g., A ∼ 100.
It should be stressed here that what one obtains in the

shell-model calculations depends on details of the model
space, correlations included, etc. Instead of the specific
values in light nuclei listed in Ref. [2], what matters is the
rough value for geffA near unity and the decreasing tendency
with the increasing mass number. The calculation we will
rely on, described below, is made in the GσEFT, resorting
to a Fermi-liquid fixed point (FLFP) theory. Now the
question is which shell model calculation maps to the
GσEFT result? Our proposal is the superallowed GT decay
of the doubly magic nucleus 100Sn. (This process has
been exploited in Ref. [4] to argue for a “first-principle
resolution” of the gA quenching problem. We contest
this point below.) What is crucial here is that it
provides the ESPM [5] to be identified with the result
of GσEFT.
Briefly stated, the doubly magic 100Sn has 50 neutrons and

50 protons in completely occupied states. In an ESPM
description, the GT transition involves the decay of a proton
in a completely filled shell (g9=2) to a neutron in an empty shell
(g7=2), thereby giving a precisely defined quenching factor
qESPM. Limited to the configuration space of the nucleons
only, theqESPM completely captures nuclear correlations up to
but below the Δ-N mass difference. In the FLFP description
exploited here, the transition corresponds precisely to the
GT transition of a quasiproton to a quasineutron on top of
the Fermi sea with the quenching factor denoted as qFL,
implying that the renormalization-group β function for the

quenching factor in the FLFP theory is nearly zero. Therefore
we arrive at the relation

qFL ≃ qESPM: ð3Þ

Superallowed GT decay in 100Sn.—There is at present a
conflicting information on the superallowed transition in
100Sn. This generates an interesting future development for
the fundamental issue of scale symmetry in a nuclear
medium.
In the old measurement performed at the GSI

Helmholtzzentrum für Schwerionenforschung, Germany
[5], the GT strength was

BGSI
GT ¼ 9.1þ2.6

−3.0 : ð4Þ

In the ESPM [6], the GT strength for the 100Sn decay to
100In comes out to be [7]

BESPM
GT ¼ 17.78: ð5Þ

This gives the quenching factor

qESPMGSI ≈ 0.6 − 0.8: ð6Þ

Given the large error bars, one can only say that this is not
inconsistent with Eq. (2).
However there is a more stringent recent experiment

from RIKEN that gives a lower GT strength with much less
error bars [8],

BRIKEN
GT ¼ 4.4þ0.9

−0.7 ð7Þ

giving the quenching factor in the range

qESPMRIKEN ¼ 0.46 − 0.55: ð8Þ

This is clearly at odds with qlight [Eq. (2)].
We now suggest this difference offers a glimpse into how

scale symmetry manifests in dense baryonic matter.
Prediction in GσEFT.—This calculation was first done

in Ref. [9] with a model that incorporates chiral-scale
symmetry [10] in the Landau-Migdal Fermi-liquid
approach to nuclei [11]. It has been shown recently [12]
that the result obtained in Ref. [9] corresponds precisely to
what one obtains in the LOSS approximation in GσEFT [3]
and therefore is in agreement with Eq. (2).
If the RIKEN result Eq. (8) is reconfirmed in the future

experiments, this would raise a question on the validity of
not only the LOSS approximation in the analysis of
compact-star properties made in Ref. [3] but also all other
EFTapproaches. This is because what is involved is the role
of scale symmetry breaking associated with a quantum
anomaly in the equation of state (EOS) for baryonic matter
at all densities. At present there is no nonperturbative
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calculation of the anomalous dimension β0 which figures
crucially in the scale anomaly of QCD, so this may give the
first glimpse of how scale symmetry emerges in a nuclear
medium and in strong interactions in general.
To address this problem in the framework of GσEFT, we

write the quenching factor as

qESPMGσEFT ¼ qSSB × qSNC: ð9Þ

Here the qSSB represents the quenching factor inherited
from QCD due to explicit scale symmetry breaking (SSB)
in GσEFT, and qSNC accounts for strong nuclear many-
body correlations (SNCs).
Scale symmetry in the nuclear axial current.—Scale

symmetry or more generally conformal symmetry in strong
interactions is a highly controversial issue dating from the
1960s, and even now there is no consensus among the
experts. The scale symmetry we are concerned with here is
an emerging, not intrinsic, symmetry at low energy and not
directly tied to the basic structure of scale anomaly. In
nuclear physics, there is no question that a scalar degree of
freedom, which may be identified with the f0ð500Þ in the
particle booklet, is essential, i.e., attraction in nuclear
potentials and covariant density functional approaches,
the existence of soft scalar modes at high density, etc.
At not too high densities, say ∼n0, SχEFT without a scalar
has the power to generate the necessary scalar property
when treated in high orders in chiral expansion involving
pion fields only. But it is highly doubtful that it can
correctly capture the properties of scalar excitations, e.g.,
soft modes, at high density as in compact stars.
Currently, scale symmetry figures prominently in Higgs

physics for going beyond the standard model involving a
large number of flavors [3] where a narrow-width scalar
“meson” with mass lower than pseudoscalars appears. The
scale symmetry we are concerned with in nuclear physics,
however, involves Nf ∼ 2–3. There is no such narrow-
width scalar in QCD in the vacuum, so in some circles, it
has been argued that there is no IR fixed-point structure in
nuclear physics.
Whether there is an IR fixed point in QCD awaits

nonperturbative calculations which for the moment remain
difficult to perform. The problem we are dealing with here
involves emergent symmetries that may not necessarily be
directly connected to the fundamental symmetries of QCD.
The issue concerns both HLS and scale symmetry which
we will focus on.
It has been observed that at high densities relevant to

compact stars, say, n≳ 3n0, there arise a variety of
(approximate) symmetries induced by nuclear correlations
[3]. Most notable is the topology change where a solitonic
baryon, i.e., skyrmion, fractionalizes into two half-
skyrmions with the chiral condensate averaged to zero but
with nonvanishing pion and dilaton decay constants,
fπ ≈ fχ ≠ 0, thus remaining in the Nambu-Goldstone

(NG) mode. There also emerges parity doubling in the
baryon spectrum. And in the dilaton limit, the fundamental
axial coupling gA tends to unity. Thus the IR structure is
quite similar to the scheme proposed by Crewther and
Tunstall (CT) [13] in QCD and in technicolor [13,14]. In
our case we are away from the possible IR fixed point if it
exists, but what is relevant is that soft theorems with both the
pseudoscalars π and scalar χ govern the dynamics. It should
be stressed that we have here scale symmetry emergent in
nuclear correlations, not necessarily reflecting on fundamen-
tal theory. A notable possibility here is that given that nuclear
correlations are governed by QCD, one could relate the IR
structure we have to what CT proposed for QCD [13].
This scheme leads to certain predictions that are not

shared by other theories, e.g., density functional approaches,
SχEFT, etc [3]. A notable case is the precocious onset of
conformal sound velocity at nonasymptotic density in
compact stars. Our suggestion is that the gA quenching
phenomenon is also consistent with the emerging sym-
metries as in dense baryonic matter.
Following Ref. [15] where the GσEFT was worked out,

we can write the axial current in the medium in the form

qSSBgAψ̄τ�γμγ5ψ ð10Þ

with

qSSB ¼ cA þ ð1 − cAÞΦβ0 ð11Þ
where β0 is the anomalous dimension of TrG2

μν and
0 ≤ cA ≤ 1 is an arbitrary constant. In the vacuum,
Φ ¼ 1, so the β0 dependence is absent. In nature the scalar
mass is nonzero, so β0 cannot be zero. Now both cA and β0,
known neither empirically nor theoretically, can be density
dependent in the medium. On the other hand, in the
medium, the quantity Φ is defined by

ΦðnÞ ¼ f�χðnÞ
fχ

≃
f�πðnÞ
fπ

< 1 for n ≠ 0; ð12Þ

where fχ (f�χ) and fπ (f�π) are, respectively, the dilaton and
pion decay constants in the vacuum (in the medium). f�π is
known up to nuclear matter density by experiment [16].
It is notable that the property of scale symmetry breaking

in the GToperator appears entirely in the factor qSSB. It can
be simply associated with an intrinsic QCD effect distinct
from mundane nuclear correlations. Note that the β0
representing scale anomaly, an explicit breaking, can figure
with density dependence only when cA < 1.
Quenching factor in the LOSS approximation.—In

Ref. [12], the LOSS approximation exploited in Ref. [3]
for compact-star physics (namely in the EOS) was invoked,

cA ¼ 1: ð13Þ

Hence in LOSS,
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qLOSSSSB ¼ 1: ð14Þ

Since in this approximation the β0 effect is entirely lodged
in the dilaton potential (giving mass to the scalar dilaton),
the current is simply gAψ̄τ�γμγ5ψ.
The qSNC was worked out in Ref. [12] using the FLFP

formula [9]. It has been argued [17] that the many-body
meson-exchange currents figuring at NnLO for n ≥ 3 could
be dropped. The reason for this is as follows: The leading
multibody correction to the single-particle GT operator
appears only at N3LO [18], consisting of a large number of
terms—more than 11 terms [19]—some of which are with
unknown parameters. Furthermore there are also “recoil
terms” due to the inevitable nonrelativistic approximation
which are mostly ignored in the field. These are of the
comparable strength to those terms taken into account.
There can be considerable cancelations among the terms as
is noted in light nuclei [20]. Hence unless all are included
there is no reason to believe that the sum of part of the terms
can give a reliable estimate. If those terms of N3LO
partially included are important as in Ref. [4], then the
terms of NnLO for n > 3 must be included to be consistent
with the chiral expansion, which appears most likely
impossible in practice. In fact the “chiral filter mechanism”
[17] states that many-body corrections to the GT operator
be suppressed. In Ref. [9], those terms together with
contributions from higher baryon resonances not figuring
in the relevant degrees of freedom considered are dropped
for consistency with the Landau Fermi-liquid structure.
This strongly suggests that the “first-principle resolution”
to the quenched gA in 100Sn made in Ref. [4] is totally
unfounded.
Now taking the large Nc and large N̄ limits where Nc is

the number of colors and N̄ is kF=ðΛ − kFÞ—where Λ is
the cutoff in the momentum space of the Fermi sphere, it
was shown that [9]

qLandauSNC ¼
�
1 −

1

3
ΦF̃π

1

�
−2

ð15Þ

where F̃π
1 is the pionic contribution, precisely calculable by

soft-pion theorems, to the Landau parameter F1.
Now the crucial questions are how accurate is Eq. (15)

and what are the possible corrections to it? Nobody knows
how to compute 1=Nc corrections to gA. Here we assume
that the leading approximation is good to the extent that
low-energy theorems involving gA such as the Goldberger-
Treiman relation are accurate. The large N̄, more appro-
priate for the problem, however is a different matter. 1=N̄,
which is of order 1=3 at normal nuclear matter density, is
not small. However, that the FLFP approximation works
remarkably well for such low-energy EW processes as the
anomalous orbital gyromagnetic ratio δgl and the enhanced
axial charge transition expressed in ϵMEC, both in Pb nuclei,
as shown in Ref. [9], suggests that the same could hold for

the GT transition. One can understand this as that the FLFP
approach captures certain (very) high order effects of the
standard chiral EFT that suppress high-order 1=Nc terms.
This is indicated by the fact that the standard badly fails to
explain those two processes. This aspect of the problem
could be checked by doing systematic high-order 1=N̄
calculations in the V low k-renormalization-group formalism
developed at Stony Brook. It is that formalism that was
applied to compact-star matter in Ref. [3] where all the
relevant references can be found. This is in progress for
both normal nuclear matter and dense compact-star matter.
And, the work, including a nontrivial expansion in scale
symmetry, is also in progress.
With the value Φðn0Þ ≈ 0.8 from [16], we get

qLandauSNC ≃ 0.79: ð16Þ

Thus in the LOSS approximation

gLandauA ≃ 1.0: ð17Þ

It turns out that Eq. (15) is very weakly dependent on
density, thus when calculated at nuclear matter density in a
Fermi-gas model, it is good for both light and heavy nuclei.
Impact of the anomalous dimension β0.—The SNC result

Eq. (16), identified as the effect of nuclear correlations
obtained in the LOSS without explicit β0 dependence, does
not imply that β0 is negligible. The β0 is responsible for the
scalar mass mχ which is important in nuclear interactions,
e.g., the scalar-exchange potential, so it cannot be zero.
Now the deviation from the LOSS approximation arises
from the ci coefficients with ci < 1.
That the LOSS seems to work well in the EOS for

nuclear matter in the GσEFT approach [3] could be taken as
an indication for ci ≈ 1. If, however, dense matter is
described in the HLS Lagrangian put on crystal, it was
realized that [21] unless the c coefficient in the homo-
geneous Wess-Zumino (HWZ) term is cHWZ < 1, there can
be no chiral transition at high density. The energy of
nuclear matter at high density is found to diverge unless the
effective ω mass goes to infinity which is totally at odds
with nature. This is directly related to the close interplay
between the ω-nucleon coupling in many-nucleon system
phrased in GσEFT, which is intimately connected with the
scalar attraction [22].
To have an idea how things go, let’s assume cA ≈ 0.15

and β0 ≈ 2.0—the same values that resolve the HWZ
problem in Ref. [21]. That would give

qSSB ¼ cA þ ð1 − cAÞΦβ0 ≈ 0.63 ð18Þ

which leads to

qESPMGσEFT ¼ qSSB × qLandauSNC ≈ 0.63 × 0.79 ≈ 0.50: ð19Þ
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This could explain the RIKEN result [Eq. (8)] if the RIKEN
data turns out to be correct.
Now the obvious question is this. In nuclear as well

as compact-star matter, the LOSS approximation with c
coefficients set equal to 1 fares well with nature [3]. Will
the c coefficients much less than 1, as seem required in
the HWZ and gA problems, upset those “good” results?
An old analysis using a different formalism for incorpo-
rating the anomalous dimension indicates that there is no
difficulty for nuclear matter [23]. Whether this is also the
case in the CT scheme and in particular at high density
where the LOSS approximation is more justified is being
investigated [24].
Continuity in scale symmetry from dilute to dense

baryonic matter.—There is an indication in nuclear observ-
ables that scale symmetry or conformal symmetry is
present in nuclear interactions both at very low energy
and density and very high density but in between there is no
indication for such symmetry. At very low energy and
density, at the unitarity limit (in the framework of pionless
EFT), conformal symmetry emerges in light nuclei and in
the EOS of baryonic matter [25]. At the normal nuclear
matter density, on the contrary, such symmetry is evidently
absent, but at high density approaching the dilaton-limit
fixed point (DLFP), the symmetry reappears [3]. The
precocious convergence to conformal sound velocity v2s ¼
1=3 signals the emergence of the symmetry at high density.
A continuity between the two limits seems to appear also

in the way qSSB manifests in the gA quenching phenomenon
going from light nuclei to heavy nuclei. This would require
that the quenching factor qSSB be near 1 making geffA → 1 in
low-mass nuclei but drop to ∼1=2 as one goes to heavier
nuclei. This would be consistent with the observation in
Ref. [2]. At high density, n ≫ n1=2 where n1=2 is the density
at which the half-skyrmion phase sets, the approach to the
DLFP “forces” the “fundamental” gA → 1 [3]. So at the two
limits, scale symmetry appears to manifest with geffA → 1.
We have no idea how this changeover takes place. It could
perhaps involve a totally unexplored transition such as
what’s discussed in Ref. [26] involving topology with HLS
and hidden scale symmetry.
Conclusion and remarks.—The GσEFT formalism we

developed before for the EOS of baryonic matter including
massive compact-star matter [3] indicates that the very
recent data on the GT strength from the RIKEN experiment
[8] could expose how the scale symmetry hidden in the
matte-free vacuum emerges in the heavy nuclei sector.
What seems to play a key role here is a non-negligible
anomalous dimension β0 of the gluonic stress tensor Tr G2

μν.
This observation suggests an analogy to the continuity from
the unitarity limit at low density (in light nuclei) to the
dilaton limit at high density (in compact stars). At both
ends, there is an insinuation, albeit indirect, for a scale
(or conformal) invariance. This is consistent with the
observations made at some high density, say, ≳3n0,

namely, the possible vanishing of the (averaged) chiral
condensate with however a nonvanishing pion (and dilaton)
decay constant, parity doubling in the baryon structure, and
the pseudoconformal sound velocity of the compact star; all
consistent, up to today, with what’s available in nature.
Intriguingly the quenching of gA in light and heavy nuclei
and in the dilaton limit obtained in GσEFT, although it is
not feasible to make a rigorous argument at present,
suggests, along with compact-star physics, the presence
of an IR structure with the nonvanishing fπ and fχ at the IR
fixed point, hence in the NGmode [13]. However given that
nuclear correlations—that give qSNC leading to geffA ≈ 1 in
light nuclei—are dictated by QCD, the IR structure
indicated in the emergent scale symmetry we discussed
in this Letter could very well support the CT scenario for
QCD proper. Clearly a lattice measurement for the IR
structure for Nf ∼ 2–3 stressed by CT would be highly
desirable.
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