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This Letter presents a neural estimator for entropy production (NEEP), that estimates entropy production
(EP) from trajectories of relevant variables without detailed information on the system dynamics. For
steady state, we rigorously prove that the estimator, which can be built up from different choices of deep
neural networks, provides stochastic EP by optimizing the objective function proposed here. We verify the
NEEP with the stochastic processes of the bead spring and discrete flashing ratchet models and also
demonstrate that our method is applicable to high-dimensional data and can provide coarse-grained EP for
Markov systems with unobservable states.
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Nonequilibrium states are ubiquitously observed from
colloidal particles to biological systems [1–6]. Injection of
energy, lack of relaxation time, or broken detailed balance
are ordinary sources of nonequilibrium, and in general,
such systems are in contact with a heat bath such as a fluid.
Thus, to describe the behavior of a nonequilibrium system,
it is necessary to investigate the energetics of the system;
however, experimentally, heat flow is difficult to measure
directly [7–10]. In this case, measuring the entropy pro-
duction (EP) can be one remedy to estimate heat flow in a
nonequilibrium system [10–12].
Many techniques have been developed to accurately

measure EP, such as approaches calculating probability
currents and density [9,13]. These methods require detailed
information from a governing equation though, so to
address this issue, a few methods to estimate the EP rate
without such detailed information have been proposed,
including the plug-in method [14–16], the compression-
based estimator [15–19], and the thermodynamic un-
certainty relation (TUR)-based estimator [13,20–23]. The
plug-in and compression-based methods estimate the EP
rate through the Kullback-Leibler divergence, but they are
only applicable for discrete state variables. And, while the
TUR-based approach has recently been adopted in frame-
works for the exact estimation of EP rates and distributions
in short time limits [21–23], estimating stochastic EP
remains an unsolved issue for continuous state variables.
Various fields in physics have been employing machine

learning (ML) to solve a wide range of nontrivial problems,
such as identifying relevant variables [24–26], identifying
phase transitions [27–32], quantum many-body problems
[33–40], and others [41]. Likewise, ML has also been
applied to EP rate estimation [23,42], as well as classi-
fication of the direction of time’s arrow [43]. Relatedly, in
the ML community, a recent work by Rahaman et al. [44]
proposed a neural network to measure an entropylike

quantity by unsupervised learning; however, the quantity
was not physically well defined, i.e., it had no scale. To the
best of our knowledge, estimating EP using neural
networks has yet to be explored.
In this Letter, we propose the neural estimator for

entropy production (NEEP), which can estimate stochastic
EP from the time-series data of relevant variables without
detailed information on the dynamics of the system. For
Markov chain trajectory s1; s2;…; sL, we build a function
hθ that takes two states, st and stþ1, where θ denotes the
trainable neural network parameters. As shown in Fig. 1(a),
the output of NEEP is defined as

ΔSθðst; stþ1Þ≡ hθðst; stþ1Þ − hθðstþ1; stÞ: ð1Þ

Here, ΔSθðst; stþ1Þ satisfies the antisymmetric relation
ΔSθðst; stþ1Þ ¼ −ΔSθðstþ1; stÞ. We define the objective
function to be maximized as

JðθÞ ¼ EtEst→stþ1
½ΔSθðst; stþ1Þ − e−ΔSθðst;stþ1Þ�; ð2Þ

where Et denotes the expectation over t, which is uniformly
sampled from f1;…; L − 1g, and Est→stþ1

is the expectation

FIG. 1. (a) Architecture of the NEEP. (b) Illustration of a MLP
with three hidden layers for an N ¼ 2 bead-spring model where
st ¼ ðxt1; xt2Þ.
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over transition st → stþ1. If detailed balance is satisfied,
then the transition s → s0 and its reverse transition s0 → s
equally appear in the ensemble of the trajectories. In this
case, the optimized ΔSθ is zero for all possible transitions,
but if detailed balance is broken, then ΔSθ becomes larger
due to more irreversible transitions. In steady state, JðθÞ
can be written as

J½h� ¼
X

i;j

piTij½ðhij − hjiÞ − e−ðhij−hjiÞ�; ð3Þ

where we set hij ≡ hðsi; sjÞ, pi ≡ pðsiÞ is the steady-state
probability density, and Tji ≡ pðsi; tþ 1jsj; tÞ is a pro-
pagator. Because the neural networks tune output hαβ ≡
hðsα; sβÞ by optimizing θ, the maximum condition for
Eq. (3) becomes

0 ¼ ∂hαβJ½h�
¼

X

i;j

½piTijð1þ e−ðhij−hjiÞÞðδiαδjβ − δiβδjαÞ�

¼ pαTαβð1þ e−ðhαβ−hβαÞÞ − pβTβαð1þ e−ðhβα−hαβÞÞ: ð4Þ

Then the solution for the optimization problem is

hαβ − hβα ¼ − ln ðpβTβα=pαTαβÞ; ð5Þ

which is the definition of stochastic entropy production
[12] when Tji ¼ T̃ij. Here, T̃ij is the time-reversal propa-
gator of Tij. This proof supports the ability of our NEEP to
learn appropriate EP. We maximize Eq. (2) via the
stochastic gradient ascent method that is widely used in
deep learning literature [45,46]. See the Supplemental
Material [47] for the training and evaluation details.
To validate our approach, we estimate the EP of two

widely studied nonequilibrium systems: the bead-spring
model for continuous state variables [5,13,42,51] and the
discrete flashing ratchet model for discrete state variables
[15,16,52]. To attempt more challenging problems, we
additionally apply NEEP to high-dimensional continuous
models and a hidden Markov model.
In the bead-spring model, N beads are coupled to the

nearest beads or boundary walls by springs and contacted
with thermal heat baths at different temperatures, as
described in Fig. 2(a). For displacements x1; x2;…; xN ,
the dynamics of N beads is governed by an overdamped
Langevin equation

_xiðτÞ ¼ AijxjðτÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTi=γ

p
ξiðτÞ; ð6Þ

FIG. 2. (a) Entropy production rate as a function of Tc=Th for models with two and five beads. The solid lines (symbols) indicate the
analytical EP rate _σ (estimated EP rate _σθ). (b) Cumulative EP over time τ along a single trajectory, which is randomly sampled from the
test set. The inset shows the ensemble-averaged EP. (c) Local EP rate as a function of x1 and x2. Top, bottom: the NEEP and analytical
results, respectively. (d),(e) _σθ with respect to training iteration for (d) two beads and (e) five beads. The left (right) inset corresponds to
results before (after) training, showing scatter plots betweenΔS andΔSθ with a fitted linear regression line (solid red line). The results in
(b)–(e) are performed at Tc=Th ¼ 0.1. (f) Results of NEEP for high-dimensional bead-spring models. _σθ as a function of N for each
number of steps (L) are plotted with five different markers, as indicated in the legend. The R2 values of the linear regression between ΔS
and ΔSθ are shown in the inset. The red dashed line denotes _σ. Error bars and shaded areas represent the standard deviation of
estimations from five independently trained estimators.
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where Aij ¼ ð−2δi;j þ δi;jþ1 þ δiþ1;jÞk=γ. Here, k is a
spring constant, γ is the Stokes friction coefficient, and
the temperature Ti of each heat bath linearly varies from Th
to Tc. ξi is an independent Gaussian white noise satisfying
E½ξiðτÞξjðτ0Þ� ¼ δijδðτ − τ0Þ, where E denotes the ensemble
average. We set all the parameters to be dimensionless and
kB ¼ k ¼ γ ¼ 1. The linearly varying temperature induces
a thermodynamic force that drives the system to a non-
equilibrium state.
To attempt EP estimation in a system with continuous

variables, we first consider N ¼ 2 and N ¼ 5 bead-spring
models. Here, _σ is the analytical value of the ensemble-
averaged EP rate [47]; Fig. 2(a) plots _σ for N ¼ 2 (5) with a
blue (orange) solid line. As illustrated in Fig. 1(b), we
employ a three-hidden-layer multilayer perceptron (MLP)
for hθ. See the Supplemental Material [47] for the con-
figuration and robustness of the architecture. For training
and test sets, we numerically sampled 103 positional
trajectories in steady state for each model. Each trajectory
was sampled with time step Δτ ¼ 10−2 [53], and the total
number of steps L is 104. We present the training results at
Tc=Th ¼ 0.1 in Figs. 2(b)–2(e). Note that all reported
results in Fig. 2 are from the test set. We also demonstrate
the estimation ability of NEEP with various L [47].
For the N ¼ 2 case, as shown in Fig. 2(b), it is observed

that our estimator provides accurate values not only for the
ensemble average but also for a single trajectory over τ.
Here, SðτÞ≡Pτ=Δτ

i¼0 ΔSðsi; siþ1Þ and σðτÞ≡ E½SðτÞ�,
where ΔS is the analytic stochastic EP per Δτ. Figure 2(c)
shows that the local EP rate over the displacement space
ðx1; x2Þ calculated by NEEP (top panel) is the same as
the analytical solution (bottom panel). The local EP rate
from NEEP at ðx1; x2Þ is measured by averaging the EP
rate produced when a particle passes through the
point ðx1; x2Þ.
To check the training process, we plot the estimated

values of _σθ over training iteration in Fig. 2(d). The dashed
red line indicates _σ. Insets in Fig. 2(d) are scatter plots
between ΔSθ and ΔS in a randomly sampled single
trajectory. As can be seen in the left inset, there is no
correlation between ΔSθ and ΔS before training. But after
training (right inset), ΔSθ is well fitted to ΔS (coefficient of
determination R2 ¼ 0.9931).
We apply the same process to the N ¼ 5 bead-spring

model, where estimating ΔS and _σ using the thermody-
namic force is difficult due to the curse of dimensionality
[13]. The result shows that ΔSθ is again well fitted to ΔS
with R2 ¼ 0.9660 [see Fig. 2(e)]. We also train our
estimator at Tc in the range of 1–10 with Th ¼ 10, as
indicated in Fig. 2(a), and verify that NEEP provides the
exact EP rate with small errors. Notably, these results are
from the test set, implying that NEEP can be generalized to
estimate EP even for unseen data.
Estimating EP in high-dimensional Langevin systems

has not been explored because of the curse of

dimensionality [22]. While a recent work [23] has made
estimations of EP rates up to N ¼ 15 using TUR, here, we
apply NEEP to bead-spring models with N ¼ 8, 16, 32, 64,
and 128. For each N, we set Th ¼ 10 and Tc to a value
where _σ ¼ 1 [47]. By increasing the training data points
(103L), we can see that _σθ for each N approaches one in
Fig. 2(f). Although EP rate estimation errors of over 10%
are seen for N ¼ 64 and 128, the R2 values support that
NEEP was able to learn the stochastic EP with appreciable
correlations [see the inset in Fig. 2(f)]. Note that, with an
increasing number of beads, the architecture of NEEP does
not change except for the number of input nodes (2N),
which means that our neural estimator’s computation time
and the number of parameters are linearly proportional to
N. Based on these points, we show that NEEP can
efficiently mitigate the curse of dimensionality through a
neural network.
Next, we demonstrate our method on the discrete

flashing ratchet model [52], which consists of a particle
moving in a one-dimensional periodic lattice. The particle
is in contact with a heat bath at temperature T and drifts in a
periodic asymmetric sawtooth potential [see Fig. 3(b)]. For
brevity, we set kB ¼ T ¼ 1. In this model, the particle state
has two variables, x and η, where x ∈ f0; 1; 2g is the
position and η ∈ fON;OFFg is the on-off potential; the
state is indicated as i≡ ði;ONÞ and i0 ≡ ði;OFFÞ.
Transition rates between each state s ∈ f0; 1; 2; 00; 10; 20g
are defined as kij ¼ eðVj−ViÞ=2 and ki0j0 ¼ 1 for i ≠ j, where
Vi is the potential at i that switches on and off at rate r ¼ 1,
i.e., kii0 ¼ ki0i ¼ r. As in a previous work [15], we generate
a series of states and remove the information of the times

FIG. 3. (a) NEEP architecture for discrete state Markov chains.
(b) Schematic of a discrete flashing ratchet model. (c) Entropy
production per step as a function of potential V. Error bars
represent the standard deviation of _σθ from five independently
trained estimators.
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when transitions occur; in this case, the analytic EP per step
is given as _σ ¼ P

α;β pðα; βÞðVα − VβÞ.
We construct the NEEP as shown in Fig. 3(a) using an

embedding layer that transforms a discrete state into a
trainable continuous vector called an embedding vector.
After the transformation, we feed the two embedding
vectors of states st and stþ1 to the MLP [47]. From a
set of different potential values, we sampled two single
trajectories with L ¼ 106 steps for each potential V
(0 ≤ V ≤ 15); one trajectory is used for training and the
other for testing. For the training data, we build five
NEEPs, randomly initialized with five different random
seeds for each potential. Figure 3(c) shows that _σ is within
the error bar of the NEEP estimations of EP per step _σθ,
where V ≤ 8. For V in the range 8–14, the overfitting [46]
problem occurs due to a lack of transitions from low to
high potential, which leads to an underestimation of _σθ
[Fig. 3(c)]. See the Supplemental Material [47] for a more
detailed discussion on how we address the overfitting issue.
For 14 ≤ V, the probability to detect the 0 → 2 transition is
below 0.5 in our simulation with L ¼ 106. In this case, _σθ
diverges because of no observation of the 0 → 2 transition
(see Fig. S5 in the Supplemental Material [47]).
So far, Markovian systems with completely observable

states have been tested; however, full state information
cannot often be accessed, with only some coarse-grained
variables typically available. In such cases, the EP of a
coarse-grained trajectory, called coarse-grained EP, is
measurable [54–57]. To test for coarse-grained EP estima-
tion, we assume that the on-off information η is now
inaccessible [15,16]. To address this problem, we build hθ
with a recurrent neural network (RNN), a popular network
to consider memory effects in time-series data. We employ
a gated recurrent unit (GRU) [58] for the RNN. As shown
in Fig. 4(a), the RNN version of NEEP (RNEEP) takes
input as a series of states with a sequence length of n, and
the outputs of the GRU are averaged over the sequence and
then fed to a single layer feed forward neural network,
which is the last layer. Now, the RNEEP output is defined
as ΔSθðxnt Þ≡ hθðxnt Þ − hθðx̃nt Þ, and the objective function
is defined as

JðθÞ ¼ EtEðxnt ;ηnt Þ½ΔSθðxnt Þ − e−ΔSθðxnt Þ�; ð7Þ

where

xnt ¼ ðxt; xtþ1;…; xtþn−1Þ; ηnt ¼ ðηt; ηtþ1;…; ηtþn−1Þ:

Here, x̃nt is the time-reversed trajectory of xnt . In steady
state, the solution for this optimization problem is the
stochastic coarse-grained EP along the trajectory xn (see the
Supplemental Material [47] for the proof),

ΔSθðxnÞ ¼ − ln

P
η̃npðx̃n; η̃nÞP
ηnpðxn; ηnÞ

¼ − ln
pðx̃nÞ
pðxnÞ : ð8Þ

Here, the ensemble-averaged coarse-grained EP of trajec-
tory xn per step is denoted as _Σn ≡ E½− lnðpðx̃nÞ=pðxnÞÞ�=
ðn − 1Þ. In general, _Σn provides a lower bound on the actual
EP per step _σ [15,16].
For 0 ≤ V ≤ 2, we train the RNEEP with six different

sequence lengths, n ¼ 2, 8, 16, 32, 64, and 128, for
maximizing Eq. (7) using the position trajectory with
L ¼ 5 × 107. As can be seen in Fig. 4(b), with increasing
sequence length n, the estimation of RNEEP ( _Σn

θ)
approaches the semianalytical value of the coarse-grained
EP per step for n → ∞ ( _Σ∞) [16]. We can verify that
_Σ2
θ is well fitted to the analytic value of _Σ2, but it remains

difficult to estimate for V ≤ 1 [see the inset in Fig. 4(b)],
because the number of transitions between any two
positions, e.g., x → y or y → x, appears almost equally
in the trajectory. While directly estimating Eq. (8) by
counting the frequency of xn is not possible for n ≥ 16
due to the curse of dimensionality, the RNEEP can resolve
this issue and enable us to estimate the coarse-grained
EP up to n ¼ 128 (see Figs. S7 and S8 in the Supplemental
Material [47]).
In previous approaches [10], estimation of the proba-

bility distribution and the probability current was essential

FIG. 4. (a) RNEEP architecture for a hidden Markov model.
(b) Results of RNEEP for a partial information problem. The
estimations _Σn

θ as a function of potential V for each sequence
length n are plotted with six different markers as shown in the
legend. The black x’s are the semianalytical values of _Σ∞. The
inset shows a plot of the y axis in log scale. The red (blue) dashed
line denotes the analytic value of _σ ( _Σ2). See Fig. S6 in the
Supplemental Material [47] for a comparison with _σ in linear
scale. Error bars represent the standard deviation of estimations
from five independently trained estimators.
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to quantify how far the system is out of equilibrium. As
NEEP does not require such estimation or detailed infor-
mation of the system, we expect our estimator to be
applicable to various fields such as active matter, biological
systems, information machines, electronic devices, and
others. This approach will be particularly useful to inves-
tigate the stochastic energetics and spatiotemporal patterns
of dissipated energy in various systems. We further expect
our method to be applicable to the understanding of
complex nonequilibrium systems, e.g., soft biological
assemblies [51] or molecular motors with hidden internal
states [59]. As a future work, modifying our NEEP method
to estimate EP in more general nonequilibrium systems like
time-dependent states will be intriguing.

The code for NEEP, implemented in PyTorch [60], is
available in Ref. [61].
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