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The thermodynamic uncertainty relation (TUR) describes a trade-off relation between nonequilibrium
currents and entropy production and serves as a fundamental principle of nonequilibrium thermodynamics.
However, currently known TURs presuppose either specific initial states or an infinite-time average, which
severely limits the range of applicability. Here we derive a finite-time TUR valid for arbitrary initial states
from the Cramér-Rao inequality. We find that the variance of an accumulated current is bounded from
below by the instantaneous current at the final time, which suggests that “the boundary is constrained by the
bulk”. We apply our results to feedback-controlled processes and successfully explain a recent experiment
which reports a violation of a modified TUR with feedback control. We also derive a TUR that is linear in
the total entropy production and valid for discrete-time Markov chains with nonsteady initial states. The
obtained bound exponentially improves the existing bounds in a discrete-time regime.
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Introduction.—Over the last two decades, stochastic
thermodynamics [1,2] has provided a general framework
for understanding dissipation and thermal fluctuations
far from equilibrium. Among the most important
achievements are the fluctuation theorems [3–10], which
refine various second-law inequalities into equalities.
Recently, yet another rigorous result known as the thermo-
dynamic uncertainty relation (TUR) was discovered [11],
which dictates that the precision of a nonequilibrium time-
integrated current observable J be bounded from below by
the inverse of the total entropy production (EP) σ:

QC ≡ Var½J�
hJi2 σ ≥ 2; ð1Þ

where hJi and Var½J� are the average and the variance of
J. The inequality (1) was originally discovered in bio-
chemical networks [11] and proved by large deviation
theory [12].
The original TUR (1) has a rather limited range of

applicability [13], where the system is assumed to obey a
Markovian continuous-time dynamics and should start
from a nonequilibrium steady state (NESS) [14,15] or wait
until the system relaxes to the NESS [12]. Without any
one of these assumptions the bound could be violated
[13,16–19]. A number of generalizations have been dis-
cussed, such as discrete-time Markov chains [16], periodi-
cally driven systems [17,18], measurement and feedback
control [19,20], active matter systems [21–23], and quan-
tum Markovian dynamics [24]. In particular, fluctuation
theorems are found to directly lead to a bound involving an
exponentiated EP, which is known as the generalized TUR

(GTUR) [25–27]. Information-theoretic approaches such as
the Martingale theory [28] and the Cramér-Rao inequality
[29–32] have been utilized to derive the original TUR and
its variants.
However, none of these generalizations are quite

satisfactory because their bounds are either very loose
such as the GTURs or involving terms with no clear
physical meaning. Moreover, most of these bounds
require an initialization to a NESS or other specific
states. In this Letter, we fill the gaps by deriving
universal bounds on fluctuation and dissipation valid
for an arbitrary finite time and arbitrary initial states in
continuous-time and discrete-time Markov processes via
the Cramér-Rao inequality. For continuous-time proc-
esses, our bound is a highly nontrivial generalization of
Eq. (1), where the ensemble-averaged time-integrated
current hJi is replaced by the final-time instantaneous
current multiplied by the time period, which implies that
the boundary current is constrained by the bulk fluc-
tuation and EP. Our formula reduces to the original TUR
when the initial state is a NESS. We illustrate our result
with minimal models and apply it to feedback-controlled
processes. In particular, we explain a recent experiment
which reports a violation in a modified TUR with
feedback control [33]. For discrete-time processes, we
find that the total EP modified by a certain sum of
Kullback-Leibler divergences is rescaled by the minimal
staying probability of the Markov chain. Our result
exponentially improves the existing results in a dis-
crete-time regime [16,34].
Setup.—We consider a general multichannel Markovian

system S (see Fig. 1) described by the master equation
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_PðtÞ ¼ RPðtÞ; ð2Þ

where ½PðtÞ�x ≡ Pðx; tÞ is the system-state distribution at
time t and ½R�yx ≡ rðx; yÞ ¼ P

ν r
νðx; yÞ is the time-

independent transition rate matrix. Here rνðx; yÞ is the
transition rate from x to y via channel ν; i.e., the transition is
caused by the νth heat bath Bν at inverse temperature βν.
For a trajectory ω ¼ ðx0; t0 ¼ 0; x1; ν1; t1; x2; ν2; t2;…; xn;
νn; tn ≤ T ≡ tnþ1Þ, where a transition from xj−1 to xj via
channel νj occurs at tj (j ¼ 1; 2;…; n) during a finite time
period T, the path probability density governed by Eq. (2) is
given by

P½ω� ¼ Pðx0Þe−
P

x
λðxÞτx½ω�þ

P
x≠y;ν

nνxy½ω� ln rνðx;yÞ; ð3Þ

where Pðx0Þ is the initial distribution, λðxÞ ¼P
y∶y≠x rðx; yÞ is the escape rate for state x, τx½ω�≡P
n
j¼0 δxjxðtjþ1 − tjÞ is the total time during which the

system stays in state x, and nνxy½ω�≡P
n
j¼1 δxj−1xδxjyδνjν is

the total number of transitions from x to y through channel
ν. A general stochastic accumulated current is defined as

J½ω�≡ X
x≠y;ν

nνxy½ω�dνðx; yÞ; ð4Þ

where dνðx; yÞ ¼ −dνðy; xÞ is the antisymmetric increment
associated with transition x → y via channel ν. For
example, dνðx; yÞ ¼ δx0xδy0yδν0ν gives the net number of
transitions from x0 to y0 via channel ν0, while dνðx; yÞ ¼
ðEx − EyÞδν0ν (Ex: energy of state x) gives the net heat flow
into the ν0th bath. Provided that the local detailed
balance rνðx;yÞe−βνEx ¼ rνðy;xÞe−βνEy holds, the ensemble-
averaged total EP for the dynamics is given by [35]

σ ¼
Z

T

0

dt
X
x≠y;ν

Pðx; tÞrνðx; yÞ lnPðx; tÞr
νðx; yÞ

Pðy; tÞrνðy; xÞ : ð5Þ

Main result.—We show that the fluctuation of an
arbitrary accumulated current (4) is bounded by the total
EP and the final instantaneous current:

QT ≡ Var½J�
½TjðTÞ�2 σ ≥ 2; ð6Þ

where jðTÞ≡P
x≠y;νPðx;TÞrνðx;yÞdνðx;yÞ is the ensemble-

averaged final instantaneous current. Such an inequality can
equivalently be written as

jjðTÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Var

�
J
T

�
σ

s
; ð7Þ

which implies that the boundary current is constrained by
the bulk (time-averaged) current fluctuation and dis-
sipation. In other words, if we want to achieve a large
instantaneous current, which means driving the system far
from equilibrium, we should either suffer large dissipation or
sacrifice the quality (small fluctuation) of the time-integrated
current. This statement refines the dissipation-precision trade-
off of conventional TURs for NESSs [11,12,14,15].
Some remarks are in order here. First, the bound (6)

holds for arbitrary initial states and there can be multiple
transition channels. If there is only a single heat bath and
the initial state is a NESS, the denominator is nothing but
the accumulated current; thus the original TUR (1) is
recovered. Second, every term in our bound allows a clear
physical interpretation and is experimentally measur-
able [36–38]. Previous efforts at generalizing the TUR
mainly focus on modifying the EP [17,18,31,32]; however,
the modification lacks a clear physical meaning. Third, our
result implies a sufficient (necessary) condition for the
validity (violation) of the original TUR (1) for a nonsteady
initial state—the final current jðTÞ is larger (smaller) than
the time-averaged one j̄≡ hJi=T. This is primarily due to
an increase (decrease) of the current, as we will illustrate in
some minimal models. Finally, we emphasize that even the
widely applicable GTUR generally breaks down for an
arbitrary initial state since it requires that the initial and
final states coincide [25].
Two minimal models.—Before going into the derivation

of the main result, let us examine the main result (6) in some
minimal models. We first consider the simplest example for
an equilibrium steady state. As shown in Fig. 2(a), a two-
level system with states 0 and 1 couples to a single heat
reservoir at inverse temperature β. The energy gap between
the two states is set to beΔ ¼ 1 and the state 0 is assumed to
be lower in energy. We start from an arbitrary initial state
Pð0Þ ¼ ½p; 1 − p�T (T : transpose) and let the system relax to
its equilibrium steady state. The current is chosen to be the

FIG. 1. (a) Schematic illustration of our setup. The system of
interest S is coupled with several thermal reservoirs Bν. The
dynamics of the system is governed by a Markovian master
equation (2). The state transition at each time is caused by the
reservoirs. The current can be heat flow from the system to one of
the reservoirs or a linear combination thereof. (b) Monte Carlo
simulation of the time-integrated current in a two-heat-bath
minimal model with a nonequilibrium steady state. Different
colors correspond to different realizations. The black line
indicates the average current hJi. The length of the gray double
arrow shows twice the standard deviation of the accumulated
current.
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net flow from 1 to 0. According to the local detailed balance
condition, two transition rates rð0; 1Þ and rð1; 0Þ satisfy
rð0; 1Þ ¼ e−βrð1; 0Þ. By utilizing full counting statistics
[39–41], we can analytically calculate all the quantities in
the bound (6) [42]. In Fig. 2(b), we find that only our bound
holds, whereas the conventional TUR and the GTUR are
violated. This is because the currents decrease exponentially
with time, implying that the time-averaged current is larger
than the current at the final time. Consequently, ourQT value
should be larger than the conventionalQC, and therefore the
conventional TUR may fail.
We now consider a simplest model for an NESS which

involves a two-level system with states 0 and 1 and the
energy gap Δ ¼ 1 in contact with two heat baths at inverse
temperatures βh and βc. Since the state transition can be
induced by either of the baths, there is a total of four
transition rates [see Fig. 2(c)] which satisfy two
local detailed balance relations: rhð1; 0Þ ¼ eβhrhð0; 1Þ
and rcð1; 0Þ ¼ eβcrcð0; 1Þ. The current is chosen to be
the heat flow from the hot bath, whose instantaneous value
at time t reads jhðtÞ ¼ P0ðtÞrhð0; 1Þ − P1ðtÞrhð1; 0Þ. We
start from a special initial state so that jhð0Þ vanishes. The
current fluctuation is again calculated from full counting
statistics [42]. In Fig. 2(d), we see that both jhðTÞ and jh are
bounded from above by q, while jhðTÞ is tighter. This is
because the current monotonically increases so that the
final current is larger than the time-averaged one.
Accordingly, our QT should be smaller than QC. Since

QT is bounded from below by 2, the larger quantity QC
should be bounded from below by 2 as well.
Application to feedback-controlled processes.—Our

TUR (6) can readily be extended to include the effect of
measurement and feedback control in the context of
information thermodynamics [43]. As a general setup,
the system of interest S couples with multiple heat baths
Bνs at inverse temperatures βνs. In addition, as shown in
Fig. 3, a meter M probes the state of the system
and performs feedback control by changing the transition
matrix to Rm according to the measurement outcome m
[44]. We assume that the measurement and feedback are
done instantaneously, after which the system will
relax during a time interval τ through coupling to the
baths. This assumption is justified if they are per-
formed sufficiently fast compared with the stochastic
transitions in the system [9,33,44]. At the end of the
relaxation the meter will be reset to its default state,
e.g., 0, and then the next cycle begins [45]. The system
will eventually reach a stroboscopic steady state in the
sense that the state of the system will be statistically the
same after one period while it can change during each
cycle. Within a single relaxation period, the total EP
should be σ ¼ Ið0Þ − IðτÞ þ σS þ σB, where IðtÞ≡P

s;m Pðs;m; tÞ lnf½Pðs;m; tÞ�=½PSðs; tÞPMðmÞ�g is the
mutual information between the system and the meter at
time t with Pðs;m; tÞ, PSðs; tÞ and PMðmÞ being the joint
distribution of the system and the meter, the marginal
distribution of the system and that of the meter; σS and σB
are the entropy changes in the system and baths,
respectively. Here we have used the fact that PMðmÞ is
time independent and thus there is no entropy production in
the meter. Defining the consumed mutual information
ΔI ≡ Ið0Þ − IðτÞ and the physical entropy production
σP ≡ σS þ σB, we have

QT ¼ Var½J�
½τjðτÞ�2 ðσP þ ΔIÞ ≥ 2; ð8Þ

FIG. 2. (a) Two-level system coupled with a single heat bath.
(b) Comparison between the final instantaneous current (red), the
time-averaged current j̄≡ hJi=T (blue) and the current bounds
from the conventional (black dashed, q≡ T−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½J�σ=2p

) and
generalized [green dashed, qG ≡ T−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½J�ðeσ − 1Þ=2p

] TURs.
Our inequality (7) is satisfied, whereas the original one (1) is not.
The initial state is chosen to be Pð0Þ ¼ ½0.3; 0.7�T and the
transition rates are rð0; 1Þ ¼ 1 and rð1; 0Þ ¼ 2. (c) Two-level
system coupled with cold and hot baths. Red arrows represent the
transitions via coupling to the hot heat bath, and blue ones
represent the cold bath. (d) Same quantities as in (b) for the model
in (c), where both inequalities (6) and (1) are valid. The initial
state is chosen so that the initial hot current vanishes. We set
βh ¼ 1, βc ¼ 1.5, and rhð0; 1Þ ¼ rcð0; 1Þ ¼ 1 in our simulation.

FIG. 3. System in contact with cold and hot baths subject to
measurement and feedback. The system is probed by a meter M
and subject to feedback control according to the measurement
outcome. After the feedback, the system undergoes Markovian
dynamics by interacting with two heat baths.
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where J can be an arbitrary current determined from an
antisymmetric increment dνmðx; yÞ that generally depends
on the measurement outcome. Note that if the system
reaches a stroboscopic steady state, then σP ¼ σB.
We can explain a recent experiment on feedback

control [33] with the criteria described in the previous
section. The authors in Ref. [33] constructed an information
engine consisting of an optically trapped colloidal
particle immersed in a heat reservoir at inverse temperature
β, following a repeated protocol of measurement, feedback,
and relaxation. In the ith cycle, the demon measures
the position xi of the particle. Due to noise, the outcome
yi could be different from xi. The center of the potential λi−1
is suddenly shifted to yi and let the particle relax for a period
τ before the next cycle begins according to the overdamped
Langevin equation. The system will reach a stroboscopic
steady state after many cycles. The stochastic current is the
work βW performed on the particle by shifting the potential.
Because there is only one heat bath, the dynamics after
feedback control is simply a relaxation process toward
equilibrium. The absolute value of the current always
decreases with time. The conventional TUR can be violated
for a certain range of parameters as reported in Ref. [33].
Generalization to discrete-time Markov chains.—We

consider a general multichannel Markovian system S
starting from an arbitrary initial state as in Fig. 1(a) which
is now described by the following discrete-time evolution
equation:

Pðx; tiÞ ¼
X
y;ν

AνðxjyÞPðy; ti−1Þ; ð9Þ

where Pðx; tiÞ is the probability of the system being in state
x at time ti and AνðxjyÞ is the transition prob-
ability from state y to state x through channel ν. The
transition probabilities satisfy the normalization condition:P

x;ν A
νðxjyÞ ¼ 1. The total EP for n steps is given by

[42,46,47]

σ ¼
Xn
i¼1

X
x;y;ν

Pðx; ti−1ÞAνðyjxÞ lnPðx; ti−1ÞA
νðyjxÞ

Pðy; tiÞAνðxjyÞ : ð10Þ

The TUR valid for this process (9) reads [42]

QD ≡ Var½J�
½njðtn−1Þ�2

σ̃

a
≥ 2; ð11Þ

where the tilde EP is defined as σ̃ ≡ σ þP
n
i¼1DKL½PðtiÞjjPðti−1Þ� with DKL being the Kullback-

Leibler divergence, a is the minimal staying prob-
ability a≡minxAðxjxÞ, and jðtn−1Þ≡P

x≠y;ν Pðx; tn−1Þ
AνðyjxÞdνðyjxÞ is the current at the final step. We make
two comments. First, the bound (11) can be reduced to the
continuous-time bound (6) in the limit of Δt → 0. Second,
there exists a discrete-time TUR exponentiated in the total

EP for NESS [16]. Our bound (11) exponentially improves
the result because it is linear in the total EP.
Derivation of the main result.—We finally prove

inequality (6). We can employ large deviation theory to
derive our result (6) [42,48]. However, a more straightfor-
ward and elegant approach is based on the generalized
Cramér-Rao inequality [49]:

Varθ½Θ� ≥
ψ 0ðθÞ2
FðθÞ ; ð12Þ

where θ is a parameter, FðθÞ is the Fisher information and
Θ½ω� is an unbiased estimator for a smooth function ψðθÞ,
i.e., hΘiθ ¼ ψðθÞ. Here, the average is defined as hgiθ ≡R
Dωg½ω�Pθ½ω� for a parametrized distribution Pθ½ω�.

Our goal is to relate each term in (12) to the thermodynamic
quantities in Eq. (6) [30–32]. To this end, we first
parametrize a typical path probability density in Eq. (3)
as

Pθ½ω� ¼ Pθðx0Þe
P

n
j¼1

ln r
νj
θ ðxj−1;xj;tjÞ−

P
n
j¼0

R
tjþ1

tj
dtλθðxj;tÞ

; ð13Þ

which is determined from an auxiliary transition matrix
RθðtÞ with time-dependent entries ½RθðtÞ�yx ¼ rνθðx; y; tÞ
and ½RθðtÞ�xx ¼ −λθðx; tÞ≡ −

P
y∶y≠x;ν r

ν
θðx; y; tÞ. When

we set θ to be a certain value, say 0, rνθðx; y; tÞ should
go back to the time-independent typical value rνðx; yÞ. By
definition, the Fisher information can be calculated from
Eq. (13) as

FðθÞ ¼
Z

T

0

dt
X
x≠y;ν

Pθðx; tÞrνθðx; y; tÞ
� ∂
∂θ ln r

ν
θðx; y; tÞ

�
2

;

ð14Þ

where the initial auxiliary state is assumed to be a typical
one, i.e., Pθðx0Þ ¼ Pðx0Þ. By choosing Θ½ω� ¼P

n
j¼1 d

νjðxj−1; xjÞ to be a general accumulated current,
Varθ½Θ� at θ ¼ 0 simply gives the desired current fluc-
tuation. In this case, ψðθÞ is nothing but the ensemble-
averaged current given by

hΘiθ ¼
Z

T

0

dt
X
x≠y;ν

Pθðx; tÞrνθðx; y; tÞdνðx; yÞ; ð15Þ

where Pθðx; tÞ is determined from the solution of the
parametrized master equation with generator RθðtÞ.
Comparing the structure of our TUR (6) with the

Cramér-Rao inequality (12), we relate the Fisher
information Fð0Þ and ψ 0ð0Þ to half of the total EP σ given
in Eq. (5) and the final current jðTÞ, respectively. As
a sufficient condition, we choose the parametrization
rνθðx; y; tÞ ¼ rνðx; yÞeθανxyðtÞ, and assume that for each pair
of ðx; yÞ at any time t and any channel ν, the following
conditions are satisfied:
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Kν
xyðανxyÞ2 þ Kν

yxðανyxÞ2 ¼
1

2
ðKν

xy − Kν
yxÞ ln

Kν
xy

Kν
yx
; ð16Þ

Kν
xyα

ν
xy − Kν

yxα
ν
yx ¼ Kν

xy − Kν
yx; ð17Þ

where Kν
xyðtÞ≡ Pðx; tÞrνðx; yÞ and its time dependence [as

well as that in ανxyðtÞ] is omitted for simplicity. The above
two equations, whose solutions always exist [42], guaran-
tee Fð0Þ ¼ 1

2
σ and ψ 0ð0Þ ¼ TjðTÞ for an arbitrary dνðx; yÞ.

The former simply follows from Eqs. (5) and (14). To show
the latter, we note that, up to the leading (first) order in θ,
the parametrized probability is given by [42]

PθðtÞ ¼ PðtÞ þ θt _PðtÞ þOðθ2Þ; ð18Þ

leading to ∂θPθðtÞjθ¼0 ¼ t _PðtÞ. Combining this result
with Eq. (17), we find that ψ 0ð0Þ≡ ∂θhΘijθ¼0 is an
integral of a total derivative ðd=dtÞ½tjðtÞ� with jðtÞ≡P

x≠y;ν Pðx; tÞrνðx; yÞdνðx; yÞ being the instantaneous
current. Therefore, we obtain ψ 0ð0Þ ¼ tjðtÞjT0 ¼ TjðTÞ.
For the case with feedback control, we have only to add
another index m representing the meter’s state.
Summary and outlook.—We have established new TURs

(6) and (11) for general continuous- and discrete-time
multichannel Markovian systems starting from an arbitrary
initial state. Our results includes the conventional TURs
[11,12,14,15] as special cases and incorporate the effect of
measurement and feedback control [see inequality (8)]. The
continuous bound (6) can also be used to explain the recent
experiment [33]. The discrete bound (11) exponentially
improves the TURs in a discrete-time regime. While our
results greatly extend the range of validity of the TURs, the
time-homogeneous assumption of transition rates and
probabilities needs to be made. How to relax this require-
ment is an important subject for future studies. It should
also be of interest to investigate the effect of absolute
irreversibility [50,51] on the TURs.
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