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The Hawkes self-excited point process provides an efficient representation of the bursty intermittent
dynamics of many physical, biological, geological, and economic systems. By expressing the probability
for the next event per unit time (called “intensity”), say of an earthquake, as a sum over all past events of
(possibly) long-memory kernels, the Hawkes model is non-Markovian. By mapping the Hawkes model
onto stochastic partial differential equations that are Markovian, we develop a field theoretical approach in
terms of probability density functionals. Solving the steady-state equations, we predict a power law scaling
of the probability density function of the intensities close to the critical point n ¼ 1 of the Hawkes process,
with a nonuniversal exponent, function of the background intensity ν0 of the Hawkes intensity, the average
timescale of the memory kernel and the branching ratio n. Our theoretical predictions are confirmed by
numerical simulations.
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The self-excited conditional Poisson process introduced
by Hawkes [1–3] is the simplest point process modeling
epidemic dynamics, in which the whole past history
influences future activity. It captures the ubiquitous
phenomenon of time (and space) intermittency and cluster-
ing due to endogenous interactions. The Hawkes process is
enjoying an explosion of interest in many complex systems,
including in physics, biology, geology, and seismology and
in financial and economic markets. For instance, the
Hawkes model remains the standard reference in statistical
seismology [4–7] and is now used to model a variety of
phenomena in finance, from microstructure dynamics to
default risks [8,9]. The Hawkes process is also fashionable
to model social dynamics [10].
A key ingredient of the Hawkes model is the memory

kernel hðtÞ, which quantifies how much a past event
influences the triggering of a future event. When hðtÞ is a
pure exponential function, the Hawkes model can be
represented as a Markovian process by adding an aux-
iliary variable. But most systems exhibit longer memo-
ries, with hðtÞ containing multiple time scales and often
describing power law decaying impacts, which makes the
Hawkes model non-Markovian in general. Here, we
present a general field master equation, which represents
the self-excited Hawkes process as being equivalent to a
Markovian stochastic partial differential equation
(SPDE). This novel representation allows us to use the
mathematical apparatus to solve master equations and
derive a new result on the distribution of activity rates,

which is found to take the form of a nonuniversal
power law.
The Hawkes process is defined via its intensity ν̂, which

is the frequency of events per unit time. An event can be a
burst of electrons in an amorphous semiconductor or an
organic compound associated with photoconductivity [11],
a rainfall or runoff in catchments [12], an earthquake [4], an
epidemic [13], an epileptic seizure [14], a firm’s bankruptcy
or credit default [15,16], a financial volatility burst [17,18],
a transaction in foreign exchange markets [19], a book sale
[20], a view of a YouTube video [21], or any other
occurrence in social dynamics [22]. Such an event (or
shock) occurs during ½t; tþ dtÞ with the probability of ν̂dt,
with

ν̂ðtÞ ¼ ν0 þ n
XN̂ðtÞ

i¼1

hðt − t̂iÞ; ð1Þ

where ν0 is the background intensity, t̂i represents the time
series of events, n is a positive number called branching
ratio, hðtÞ is a normalized nonnegative function satisfyingR∞
0 hðtÞdt ¼ 1, and N̂ðtÞ is the number of events during the
interval ½0; tÞ (called “counting process”), as shown in
Fig. 1(a) for a schematic. By convention, we denote
stochastic variables with a hat symbol, such as Â, to
distinguish them from the nonstochastic real numbers A,
corresponding for instance to a specific realization of the
random variable. The memory kernel hðtÞ represents the
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usually non-Markovian influence of a given event. The
branching ratio n is the average number of events of first
generation (“daughters”) triggered by a given event [4,23]
and is also the fraction of events that are endogenous, i.e.,
that have been triggered by previous events [24]. The
Hawkes process has three different regimes: (i) n < 1:
subcritical; (ii) n ¼ 1: critical and (iii) n > 1: supercritical
or explosive (with a finite probability). The Hawkes
process is a model for out-of-equilibrium systems without
detailed balance [25] and does not satisfy the fluctuation-
dissipation relation [26].
Let us decompose the memory kernel as a continuous

superposition of exponential kernels,

hðtÞ ¼ 1

n

Z
∞

0

nðxÞ
x

e−t=xdx; n ¼
Z

∞

0

dxnðxÞ; ð2Þ

satisfying the normalization
R∞
0 hðtÞdt ¼ 1 with the set of

continuous timescale x ∈ Rþ ≔ ð0;∞Þ. This decomposi-
tion is equivalent to applying the Laplace transform, a
standard method even for non-Markovian Langevin
equations [26–30]. Here nðxÞ quantifies the contribution
of the xth exponential with memory length x to the
branching ratio and nðxÞ=n is the normalized distribution
of timescales present in the memory kernel. In this Letter,
we require the existence of its first moment

α

n
≔ hτi ≔

Z
∞

0

x
nðxÞ
n

dx < ∞: ð3Þ

This condition (3) means that nðxÞ should decay faster than
1=x2 at large x and thus hðtÞ decays at large times faster
than 1=t2. In addition, we restrict our analysis to the
subcritical case n < 1.
The starting point of our approach is to express ν̂ðtÞ (1)

as the continuous sum

ν̂ðtÞ ¼ ν0 þ
Z

∞

0

dxẑðt; xÞ; ð4Þ

where each excess intensity ẑðt; xÞ is the solution of a
simple time-derivative equation

∂ẑðt; xÞ
∂t ¼ −

ẑðt; xÞ
x

þ nðxÞ
x

ξ̂Pν̂ ðtÞ; ∀ x ∈ Rþ; ð5Þ

and the same state-dependent Poisson noise ξ̂Pν̂ ðtÞ,
defined by

ξ̂Pν̂ ðtÞ ¼
XN̂ðtÞ

i¼1

δðt − t̂iÞ; ð6Þ

acts on the Langevin Eq. (5) for each excess intensity ẑðt; xÞ
[see Fig. 1(b)]. The excess intensity fẑðt; xÞgx∈Rþ can be
viewed as a one-dimensional field variable distributed on
the x axis; correspondingly, Eq. (5) should be considered as
an SPDE describing the classical stochastic dynamics of the
field. This interpretation has the advantage of allowing us to
apply functional methods available for SPDEs [25]. The
introduction of the ẑðt; xÞ is called Markovian embedding,
a technique to transform a non-Markovian dynamics onto a
Markovian one by adding a sufficient number of variables
(see [31–33] for the cases of non-Markovian Langevin
equations). Markovian embedding is related to the trick
proposed in [34] for an efficient estimation of the maximum
likelihood of the Hawkes process. Each SPDE (5) describes
a Markovian relaxation of the field variable ẑðt; xÞ, hit by
intermittent simultaneous shocks ξ̂Pν̂ ðtÞ with x-dependent
sizes nðxÞ=x, whose influence decays exponentially with
the characteristic time x. Equation (5) together with (6)
implies that ν̂ðtÞ given by (4) recovers the standard Hawkes
definition (1).

Mapping

(a) Non-Markovian dynamics of total intensity (b) Markovian field dynamics of excess intensities 

Jump size

Faster decay

Slower decay

FIG. 1. Mapping from (a) a non-Markovian description of the total intensity ν̂ðtÞ, obeying the original Hawkes process (1), to (b) a
Markovian description of the excess intensity fẑðt; xÞgx on the auxiliary field variable x ∈ Rþ, which obeys an SPDE (5). Notice the
shocks (6) impact all excess intensity fẑðt; xÞgx for all different variables x simultaneously (orange plane at t ¼ t̂i). One can observe the
dependence nðxÞ=x of the jump size given in Eq. (5) along the field variable x (blue chain arrow). Along the time axis, the exponential
decay ∼e−t=x is shown to be faster (slower) for smaller (larger) x (red broken arrow). The sample trajectory was generated with the
branching ratio density nðxÞ ¼ ciniðx − xiniÞ þ nini if x ∈ ½xini; xfin� [nðxÞ ¼ 0 otherwise], with ν0 ¼ 0.05, xini ¼ 0.5, xfin ¼ 10.0,
cini ¼ 0.0044, nini ¼ 0.021, Δx ¼ ðxfin − xiniÞ=200, and Δt ¼ 0.006.
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We have thus transformed a non-Markovian point
process into a Markovian SPDE, which allows us to derive
the corresponding master equation for the probability
density functional (PDF) P½fẑðt; xÞ ¼ zðxÞgx∈Rþ� ¼ Pt½z�
for any field configuration fzðxÞgx∈Rþ , such that Pt½z�Dz is
the probability that the system is in the state specified by
fzðxÞgx∈Rþ at time t, with the functional integral volume
element Dz. The corresponding master equation for the
PDF Pt½z� reads

∂Pt½z�
∂t ¼

Z
dx

δ

δz

�
z
x
Pt½z�

�

þ
�
ν0 þ

Z
dx

�
z −

n
x

��
Pt

�
z −

n
x

�

−
�
ν0 þ

Z
dxz

�
Pt½z�; ð7Þ

with the condition Pt½z� ¼ 0 holding over the boun-
dary of the function space z ∈ ∂R∞þ ≔ fzjzðxÞ ¼ 0

for some x ∈ ð0;∞Þg. This can be derived by performing
an ensemble average in a weak integral sense, namely
considering an arbitrary functional f½fẑðt; xÞgx� and aver-
aging it over all possible realizations of ẑðt; xÞ weighted by
their PDF (see Ref. [35] for details). The functional
description (7) is interpreted as a formal continuous limit
of a discrete formulation according to the convention [25]
(see Ref. [35] for technical details).
It is convenient to transform (7) using the functional

Laplace transformation Lpath of an arbitrary functional f½z�
defined by the functional integration (or path integral)

Lpathðf½z�; sÞ ≔
R
Dze−

R
dxsðxÞzðxÞf½z�. Then, the Laplace

representation of the PDF is P̃t½s� ≔ LpathðPt½z�; sÞ for an
arbitrary nonnegative function fsðxÞgx∈Rþ . The resulting
Laplace transformed master Eq. (7) takes the following
simple first-order functional differential equation in the
steady state (∂Pt½z�=∂t ¼ 0):

Z
dxH½s; x� δΦ½s�

δsðxÞ ¼ −ν0K½s�; ð8Þ

where Φ½s� ≔ log P̃ss½s� ≔ limt→∞ log P̃t½s� is the steady

state cumulant functional,H½s; x� ≔ e−
R

dx0sðx0Þnðx0Þ=x0 − 1þ
sðxÞ=x, and K½s� ≔ e−

R
dx0sðx0Þnðx0Þ=x0 − 1. This hyperbolic

equation can be solved by the method of characteristics; the
corresponding Lagrange-Charpit (LC) equations are the
following partial-integro equations,

∂sðl; xÞ
∂l ¼ −H½s; x�; ∂ΦðlÞ

∂l ¼ ν0K½s�; ð9Þ

with the curvilinear parameter l indexing the position along
a characteristic curve. The tail of the distribution of
intensities ν̂ corresponds to the neighborhood of s ¼ 0

in the Laplace transform domain (i.e., P̃ssðsÞ ∼ jsjγ for
s → 0 ⇔ PssðνÞ ∼ ν−γ−1 for ν → ∞ [36]). We first study
the subcritical case n < 1 and then the critical regime n ¼ 1
via a stability analysis of (9) for small s.
Remarkably, the LC equations can be interpreted as a

dynamical system where l plays the role of time. This
mapping allows us to use the standard stability analysis for
bifurcations of dynamical systems, particularly for asymp-
totic analyses near criticality. Indeed, the stability analysis
for s → 0 corresponds to the long time limit l → ∞ and the
critical condition of the original Hawkes process (1)
corresponds to the transcritical bifurcation condition for
the dynamical system described by Eq. (9).
Subcritical case n < 1.—Linearizing the LC Eq. (9)

yields

∂sðl; xÞ
∂l ¼ −

Z
dx0Hðx; x0Þsðx0Þ; ð10aÞ

∂ΦðlÞ
∂l ¼ ν0

Z
dx0Kðx0Þsðx0Þ; ð10bÞ

with x0Hðx; x0Þ ≔ δðx − x0Þ − nðx0Þ and Kðx0Þ ≔ nðx0Þ=x0.
Introducing the eigenvalues λ ≥ λmin and eigenfunctions
eðx; λÞ of the operator Hðx; x0Þ, satisfying the relation

Z
dx0Hðx; x0Þeðx0; λÞ ¼ λeðx; λÞ; ð11Þ

we verify that all eigenvalues are real and the inverse matrix
of Hðx; x0Þ, denoted by H−1ðx; x0Þ, exists and has a
singularity at n ¼ 1 (see Ref. [35] for the proof), recovering
the critical condition of this Hawkes process.
We now introduce a set of variables to obtain a new

representation based on the eigenfunctions,

sðxÞ ¼
X
λ

eðx; λÞXðλÞ ⇔ XðλÞ ¼
Z

dxe−1ðλ; xÞsðxÞ:

ð12Þ

Here the inverse matrix e−1ðλ; xÞ is introduced, satisfyingR
dxe−1ðλ; xÞeðx; λ0Þ ¼ δλ;λ0 . The existence of the inverse

matrix is equivalent to the assumption that the set of
all eigenfunctions is complete, and thus Hðx; x0Þ can be
diagonalized:

R
dxdx0e−1ðλ; xÞHðx; x0Þeðx0; λ0Þ ¼ λδλ;λ0 . In

this representation, the linearized LC equations read

∂Xðl; λÞ
∂l ¼ −λXðl; λÞ: ð13Þ

For subcriticality, all the eigenvalues are positive, indicat-
ing that the fixed point fXðλÞ ¼ 0gλ (i.e., fsðxÞ ¼ 0gx) is
the stable attractor in the functional space. Using straight-
forward calculations (see Ref. [35]), we obtain
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Φ½s� ≃ −ν0
Z

dx
Z

dx0KðxÞH−1ðx; x0Þsðx0Þ; ð14Þ

from which we find, for small s,

log P̃ssðsÞ ≔ log P̃ss½s1ðxÞ� ¼ Φ½s1ðxÞ� ≃ −ν0
1 − n

s; ð15Þ

where 1ðxÞ is the constant function equal to 1 for any x. The
mean intensity thus converges at long times to
hν̂ðtÞi → ν0=ð1 − nÞ, which is a well-known result [4,23].
Critical case n ¼ 1.—At criticality, the smallest eigen-

value vanishes, λmin ¼ 0, which is associated to the zero
eigenfunction eðx; λ ¼ 0Þ ¼ x, as verified by direct sub-
stitution:

R
dxHðx; x0Þeðx0; λ ¼ 0Þ ¼ 1 − n ¼ 0. From the

linear LC equation (13), it is clear that the dominant
contribution comes from the component Xðλ ¼ 0Þ,
associated with the zero eigenfunction eðx; λ ¼ 0Þ.
The explicit representation of Xðλ ¼ 0Þ is given
by Xðλ ¼ 0Þ ¼ R

∞
0 dxnðxÞsðxÞ=α, where α is defined

by Eq. (3).
We also obtain the LC equations for each component to

leading order for λ0 ≠ 0,

∂Xðl; 0Þ
∂l ≃ −

X2ðl; 0Þ
2α

;
∂Xðl; λ0Þ

∂l ¼ −λ0Xðl; λ0Þ: ð16Þ

This is the normal form of transcritical bifurcations, leading
to a log-type singularity in the cumulant for small s. Indeed,
after straightforward calculations, we obtain

log P̃ssðsÞ ≔ log P̃ss½s1ðxÞ� ≃ ν0s − 2ν0α log jsj; ð17Þ

which by inverse Laplace transform yields

PssðνÞ ∼ ν−1þ2ν0hτi; ð18Þ

using definition (3). The exponent 1 − 2hτiν0 of the PDF is
nonuniversal and a function of the background intensity ν0
of the Hawkes intensity and of the average time scale of the

memory kernel hτi. As the tail exponent is smaller than 1,
the steady-state PDF PssðνÞ would be not normalizable in
absence of some cutoff [37], coming either from finite-time
effects or nonexact criticality (n → 1−). This means that
this power-law scaling (18) actually corresponds to an
intermediate asymptotics of the PDF, according to the
classification of Barenblatt [38], which, for n close to 1, can
be observed over many orders of magnitude of the intensity
for near-critical systems, as shown in figure 2. The
intermediate power law asymptotic (18) is our main novel
quantitative result. See Ref. [35] for details.
Example 1.—The above general derivation of (18) is

rather involved and one can develop more intuition by
studying simplest cases where the memory function hðtÞ is
a single exponential or the sum of two exponentials. In the
former case hðtÞ ¼ ð1=τÞe−t=τ, all functions become single
variables and functional derivatives and integrations
become standard derivative and integration operators.
Then, the general master Eq. (7) reduces to

∂Pt

∂t ¼ 1

τ

∂
∂z zPt þ

�
ν0 þ z −

n
τ

�
Pt

�
z −

n
τ

�
− ðν0 þ zÞPt;

ð19Þ

for the PDF Pt ≔ PtðzÞ under the boundary condition
PtðzÞjz¼0 ¼ 0. Its Laplace transform of the steady-state
PDF P̃ssðsÞ ≔

R
∞
0 dνe−sνPssðzÞ reads

HðsÞ dΦðsÞ
ds

¼ −ν0KðsÞ; ð20Þ

by introducing the cumulant function ΦðsÞ ≔ log P̃ssðsÞ,
HðsÞ ≔ e−ns=τ − 1þ s=τ, and KðsÞ ≔ e−ns=τ − 1. It can be
directly solved exactly below the critical point n < 1,
leading to

PssðνÞ ∝ ν−1þ2nν0τe−2τð1−nÞν ðfor large νÞ ð21Þ

(a) (b) (c)

FIG. 2. Numerical steady state PDFs of the Hawkes intensity ν̂ for the double exponential case with ðτ1; τ2Þ ¼ ð1; 3Þ, ðn1; n2Þ ¼
ð0.5; 0.499Þ or ðn1; n2Þ ¼ ð0.5; 0.49Þ, near the critical point. (a) Background intensity ν0 ¼ 0.01, leading to the power law exponent
0.96. (b) ν0 ¼ 0.1, leading to the power law exponent 0.6. (c) ν0 ¼ 0.75, leading to the negative (i.e., growing PDF) power law exponent
−2.0. Here the sampling time interval and total sampling time are dt ¼ 0.001 and T tot ¼ 10000 from the initial condition ẑð0Þ ¼ 0. The
initial 10% of the sample was discarded from the statistics for initialization.
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near criticality 1 − n ≪ 1. Remarkably, the LC equation
ds=dl ¼ −HðsÞ reduces to the normal form of transcritical
bifurcations [see Fig. 3(a)]:

ds
dl0

¼ μs − s2 þOðs3Þ ðfor small sÞ; ð22Þ

with l0 ≔ n2l=ð2τ2Þ and μ ≔ −2ð1 − nÞ=n2.
Example 2.—For two exponentials, the memory kernel is

given by ht ¼
P

2
k¼1 ½nk=ðnτkÞ�e−t=τk, where each coeffi-

cient nk quantifies the contribution of the kth exponential
with memory length τk to the branching ratio n ¼ n1 þ n2.
In calculations paralleling those for the general and one
exponential cases, we can derive the master equation for the
two-exponential case and its Laplace representation.
Finally, the corresponding LC equations read

dsi
dl

¼ −Hiðs1; s2Þ;
dΦ
dl

¼ ν0Kðs1; s2Þ ð23Þ

with i ¼ 1, 2, Hiðs1; s2Þ ≔ e−
P

2

k¼1
nksk=τk − 1þ si=τi,

and Kðs1; s2Þ ≔ e−
P

2

k¼1
nksk=τk − 1. Following the same

approach as for the general case (2), but now dealing with
operators that are 2 × 2 matrices, we recover (18) with
hτi ¼ ðn1τ1 þ n2τ2Þ=n (see [35] for details). Our theoreti-
cal prediction is confirmed numerically for a memory
kernel with two exponentials, as shown in Fig. 2. We note
that the LC Eq. (23) exhibits the transcritical bifurcation as
illustrated in Fig. 3(b).
While the Hawkes process was believed to be unable to

produce power-law fluctuations [34], our finding demon-
strates that it does produce them in the form of intermediate
asymptotics, thus filling an important gap for applications
to real systems. Our methodology can be readily general-
ized to various nonlinear Hawkes processes, highlighting
broader power-law asymptotics [39]. Furthermore, our

main result fills a gap in the study of the Hawkes and
other point process, by focusing on the distribution of the
number νdt of events in the limit of infinitely small time
windows ½t; tþ dt�. This limit is in contrast to the other
previously studied limit of infinitely large and finite but
very large time windows, as standard results of branching
processes (of which the Hawkes model is a special case)
give the total number of events generated by a given
triggering event (see Ref. [40] for a detailed derivation and
[41] for the case of large time windows ½t; tþ T�, i.e., in the
limit of large T). The corresponding PDFs are totally
different from (18) which corresponds to the other limit
T → 0. There are also deep relationship between quantum
field theories and ours. Indeed, Eq. (7) can be formally
regarded as a Schrödinger equation for a non-Hermitian
quantum field theory (see Ref. [35]).
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