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We study a strongly interacting crowded system of self-propelled stiff filaments by event-driven
Brownian dynamics simulations and an analytical theory to elucidate the intricate interplay of crowding
and self-propulsion. We find a remarkable increase of the effective diffusivity upon increasing the filament
number density by more than one order of magnitude. This counterintuitive “crowded is faster” behavior
can be rationalized by extending the concept of a confining tube pioneered by Doi and Edwards for highly
entangled, crowded, passive to active systems. We predict a scaling theory for the effective diffusivity as a
function of the Péclet number and the filament number density. Subsequently, we show that an exact
expression derived for a single self-propelled filament with motility parameters as input can predict the
nontrivial spatiotemporal dynamics over the entire range of length and timescales. In particular, our theory
captures short-time diffusion, directed swimming motion at intermediate times, and the transition to

complete orientational relaxation at long times.

DOI: 10.1103/PhysRevLett.125.138002

The cytoskeleton composed of various biofilaments is a
prime example of a strongly interacting, crowded system
and represents a prerequisite building block of all living
cells. A distinguishing feature of these biofilaments is
their ability to self-propel in the presence of motor proteins
[1-5]. Their individual transport properties inside the
cytoskeleton play a crucial role for the proper functioning
of the cell, including its migration and mitosis, and thus
provide an inevitable ingredient for the design of biology-
inspired materials, e.g., synthetic cells [6,7]. Yet, a theory
for these highly entangled out-of-equilibrium systems
remains a challenge and poses a complex problem already
at the single-particle level, where the swimming direction
of the active agent is strongly dictated by obstacles [§—10],
attractive traps [11,12], and topological constraints [13,14].
Thus, the development of analytical theories is important
for our future understanding of transport processes in
biological systems, such as the interior of cells, soils,
and biofilms, and the design of novel nanotechnological
devices like targeted drug delivery systems [15,16] and
bioremediation tools [17-20].

Experiments of artificial Janus particles [21-24], bacteria
[22,25-27], and active granulates [28] in a fixed obstacle
matrix have revealed a drastic change of the dynamics
compared to their motion in a free environment. These
include localization by strong disorder [21,28], hydro-
dynamic trapping [23] or scattering [9], and trajectories
reminiscent of Lévy walks [25,26]. Computer simulations
of basic model systems in complex environments have been
performed under various conditions [8,29-33] and reveal
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remarkable phenomena ranging from clogging and depin-
ning [34] to negative differential mobility [10] to new
dynamical scaling laws [24,35].

Analytical models on active transport in crowded
environments [36-38], however, rely on periodic or lattice
structures and neglect the anisotropic feature of many
self-propelled agents, e.g., biofilaments and bacteria. The
diffusive transport of stiff biofilaments in a disordered
matrix has been investigated using an analytical theory and
computer simulations [39,40], but the effects due to activity
have not been explored yet. Thus, analytical theories that
incorporate both self-propulsion of anisotropic agents and
the nature of the disordered environment could serve as a
paradigmatic model system of statistical mechanics.

In this Letter, we use event-driven Brownian dynamics
simulations and an analytical theory to study a strongly
interacting system of a dense solution of self-propelled stiff
filaments. First, our computer simulations reveal that
crowding can enhance their long-time effective diffusion
by more than one order of magnitude. We explain this
counterintuitive behavior by extending the concept of a
confining tube pioneered by Doi and Edwards [41] to active
solutions and present a scaling theory for the competition
between self-propulsion and crowding. Second, and strik-
ingly, we provide an exact analytical expression of the
intermediate scattering function for a single self-propelled
filament in a densely crowded dynamic environment, with
measured motility parameters as input, in the limit of
high entanglement. Therefore, the active needle suspension
constitutes a rare example of a strongly interacting
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nonequilibrium system allowing for a complete analytic
solution.

Model.—We investigate semidilute solutions of N self-
propelled stiff filaments within a cubic box of volume V in
3D, each filament having length L and diameter » much
smaller than its length, b/L — 0, so that it is approximated
by an infinitely thin needle. Crowded solutions of self-
propelled filaments remain globally isotropic even at higher
densities, n = N/V, as the transition from isotropic to
nematic order occurs at nL*b ~ O(1) corresponding to
n — oo for infinitely thin needles [42]. Hydrodynamic
interactions can be neglected, as infinitely thin needles
cannot drag fluid. Therefore, the dynamics are dictated by
the topological constraints that the needles cannot cross
each other, which we account for in a pseudo-Brownian
scheme [40,43]. We determine possible collisions during
every Brownian time step, 7z, and update their positions
and orientations by enforcing conservation of energy and
(angular) momentum (see the Supplemental Material [44]).
Between two collisions, the active agent moves at a
constant velocity v along its instantaneous orientation u,
which performs rotational diffusion characterized by the
diffusivity DQ,. It is subject to short-time anisotropic
translational diffusion with coefficients parallel (D(‘)‘) and

perpendicular (DY) to the filament. The equations of
motion for the position r and the orientation u of the
active agent (between the collisions) read

dr
agzzm_k[ 2Dfuu + 2D3H-—uuﬂn, (1)

du /
a = _2D90tu - 2D90tu X 6’ (2)

where #7 and € represent independent Gaussian white noise
with zero mean of unit strength. The rotational diffusivity sets
the bare rotational relaxation time 7%, = 1/2D%, [49]. The
short-time transport coefficients are not independent; rather
hydrodynamics for long rods entails D =2D9 and

DS, = 12DY /L? [50]. Therefore, the behavior of the
system is controlled by two dimensionless numbers: the
(reduced) number density n*:=nL® and the Péclet
number Pe:= »L/D° measuring the strength of self-
propulsion with respect to diffusion with average diffusivity
DY = (Dﬁ +2DY%)/3.

Enhanced effective diffusion.—To quantify the effect of
crowding, we investigate the mean-square displacement
([Ar(2)]?) as a function of the number density n* at a fixed
Péclet number Pe = 125 [Fig. 1]. Here, Ar(7) = r(f) —
r(0) is the displacement of the center of the filament at lag
time 7. At short times ¢ < 75, :== D°/v* crowding plays no
role and filaments are diffusive (~D%¢), while at inter-
mediate times directed motion (~#2) dominates and even-
tually reaches the terminal diffusive regime at long times.
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FIG. 1. Mean-square displacement {[Ar(#)]>) of a self-pro-
pelled stiff filament suspended in needle solutions with different
number densities n* = nL3. Here, the Péclet number is
Pe = 125. Inset: Effective diffusivity D,y as function of the
number density n* rescaled by the effective diffusivity in a free
environment DY. The solid black line indicates a quadratic
increase.

Most prominently, as the number density increases, the
long-time diffusion increases drastically. This means that,
counterintuitively, the diffusivity of an individual self-
propelled filament can be enhanced by adding more
self-propelled filaments to the system. To quantify this
phenomenon, we determine the long-time effective diffu-
sivity Dy = lim,_, o ([Ar(¢)]?)/6¢ and present normalized
D¢/ Dgff as a function of n* in the inset of Fig. I,
where D% = D® + 0?7, /3 is the effective diffusivity at
infinite  dilution [51]. For n* > 100, an increase
of the effective diffusion is observed by more than one
order of magnitude. Most significantly, the dependence of
D.st/D%; as a function of n* suggests a power-law scaling
D.st/D% ~ (n*)?. We rationalize this enhanced effective
diffusion qualitatively via the following argument. As the
solution becomes more and more crowded, these self-
propelled filaments are forced to move within an effective
tube formed by their neighboring filaments, leading to an
increased rotational relaxation time 7,,. Consequently, the
swimming directions are preserved for long times, which is
evident by the extended directed regime (~>) with increas-
ing density [Fig. 1]. Further, we anticipate that crowding-
enhanced diffusion originates from an increased 7, i.e.,
Dejt/ D% ~ 710 /7% at fixed Péclet number Pe.

Validity of the tube theory.—To obtain more insight into
the scaling behavior of D/DY%;, we measure the topo-
logical constraints felt by the self-propelled filament. In
particular, we investigate the time-dependent orientational
correlation function (u(z)-u(0)) for a range of Péclet
numbers: Pe =0, ...,312 (see the Supplemental Material
[44]). It turns out that the shape of the relaxation becomes
purely exponential as a function of time exp(—t/7.),
characterized by the long-time rotational relaxation time
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FIG. 2. (a) In the highly entangled regime (mesoscale), a self-
propelled filament is confined to an effective tube of diameter d
created by neighboring self-propelled filaments with motility
parameters Pe, D |, D”, and 7,,.. At a later time, the filament is
confined to a new tube tilted by an angle ¢ with respect to the
initial tube. (b) Tube diameter d as a function of density n*.
(c) Orientational relaxation time 7, extracted from simulations at
different number densities n* for several Péclet numbers. Inset:
Rescaled effective diffusivities D.g for finite Péclet numbers.

Trot- The rotational relaxation times extracted from the
simulations depend on the Péclet number and the number
density [Fig. 2(c)]. In particular, they follow an asymptotic
power law, 7, ~ (n*)?, for all Péclet numbers considered.
This provides a surprisingly robust explanation for the
enhanced effective diffusion due to crowding, i.e.,
Dest /D% ~ 710/ 7% ~ (n*)?. In fact, Fig. 2(c) suggests that
the highest Péclet number studied here, Pe = 312, can
decrease the prefactor of the asymptotic scaling by a factor
of ~11 compared to the passive case (Pe = 0).

We rationalize the asymptotic power law for the active
crowded solution 7,y ~ (n*)? with a tube concept for an
active needle system. The tube model has been introduced
by Doi-Edwards for passive crowded systems [41] and
describes the dynamics of entangled solutions, where every
infinitely thin rod is confined to a tube of diameter d created
by its neighboring rods [Fig. 2(a)]. Following Doi-Edwards
[41], the tube diameter, which measures the transverse
motion of the filament, can be estimated as d ~ 1/ nL? (see
the Supplemental Material [44]). This predicted scaling,
d/L ~ (n*)~!, remains valid for all Péclet numbers; yet
upon close inspection the range of validity drifts to larger
number densities with increasing Péclet numbers (see

Fig. 2(b) and the Supplemental Material [44]). We further
introduce the disengagement time as the time the agent
requires to move its own length, L, along the tube. Since the
transverse motion is essentially frozen, the filament self-
propels and diffuses freely along the tube at timescales L /v
and L2/ Dﬁ, respectively. The disengagement time is con-

trolled by the faster of these two mechanisms, and we use as
an estimate the interpolation formula 75! = Dﬁ JL* + v/L.
In addition to motion along the tube direction, the filament
slightly rotates while entering a new tube by an angle ¢ ~
d/L with respect to the initial tube [Fig. 2(a)]. Thus, we find
the asymptotic power law for the rotational relaxation time,

1 (n*)Z 0
~ ~ " . 3
Trot 62761 (Dﬁ/DO Pe) Trot ( )

which recovers the scaling law of Doi-Edwards for passive
Systems, T, /7oy ~ (n*)?, and reduces to T, /75 ~
(n*)?Pe~! for large Péclet numbers. Accordingly, the effec-
tive diffusivity can be predicted as

(n*)?
Pe ’

D eff -~ Trot ~
0 0
D Tror

(4)

which is confirmed by an asymptotic data collapse in the
regime of high entanglement and Péclet number Pe = 50
[Fig. 2(c) inset]. Our analysis demonstrates that the rotational
relaxation time 7, and the long-time effective diffusion D
of a self-propelled filament in a crowded environment indeed
obey the scaling predictions of the tube theory, which
provides insights into the underlying microscopic dynamics.

Exact spatiotemporal dynamics.—The validity of the
tube concept suggests a physical situation sketched in
Fig. 2(a), which allows us to map a strongly interacting
many-body problem onto an effective tube theory at the
mesoscale. The key idea is to solve for the dynamics of a
single self-propelled stiff filament in free space and use the
motility parameters Pe, D| = D|(n*), D, =D, (n*),
Trot = Tror(n*) measured from the simulations as input to
predict the full spatiotemporal dynamics of a filament
immersed in a highly entangled system.

To explore the full ramifications of the effective tube
model, we compute the intermediate scattering function
(ISF), characterizing the motion in space and time as

F(k, 1) = (exp[-ik - Ar(2)]), (5)

where k = |k| denotes the wave number. The ISF is directly
related to the probability density P(Ar,u,f|uy), which
measures the probability that an active agent has moved a
distance Ar and changed its orientation from u to u during
lag time z. The ISF of a single self-propelled agent in free
space has been elaborated analytically by solving the
associated Fokker-Planck equation in Fourier space and
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FIG. 3. Intermediate scattering function F(k,t), for (a),(b) a broad range of Péclet numbers Pe at fixed density n* = 1024 and
(c) different densities n* at fixed Péclet number Pe = 125. The solid lines are the theoretical predictions of the tube model [Eq. (6)] and
symbols are from simulations. Panels (a),(b), and (c) represent data for different wave numbers kL = 50, 4, and 1073, respectively,
where L denotes the filament length. The inset in (a) shows the data in log-log scale, where the dashed solid line indicates an algebraic
decay ~t~'/2. The black dotted-dashed lines in (b) indicate the sinc function sin(wvkt)/(vkt) and the dotted lines in (c) represent effective

diffusion exp(—k?Det).
averaging over swimmer orientations [51] (see the
Supplemental Material [44]):

1 — 1 2
Pl =gttt gy [ / 1 ans‘;w)} . (6)
=0 -

Here, Ps’/(17) = Ps’ (5. R, c) are the generalized spheroidal
wave functions of order m and degree £ with eigenvalues
Al = AZ(R, c), which depend on the parameters R =
—2ikvt, and ¢ = 2(Dy — D | )k 7.

Figure 3 shows a comparison of the ISFs obtained from
simulations and the theoretical predictions of the tube
model for different wave numbers kL, Péclet numbers
Pe, and number densities n*. The close agreement over 6
orders of magnitude in time and 5 orders of magnitude in
space corroborates that the theoretical prediction is in fact
an exact result in the highly entangled regime that remains
valid for all Péclet numbers: Pe =0, ..., 312.

Most prominently, for high Péclet numbers (Pe = 31) the
ISFs of highly entangled filaments display oscillations,
which are fingerprints for the persistent swimming motion
of an active filament [Fig. 3(a),(b)]. These oscillations can
be rationalized by inspecting the general expression
of the ISF [Eq. (5)]. In particular, if the dynamics is
dominated by persistent swimming motion, the trajectories
can be approximated by |Ar(7)| = vt leading to F(k,t) =
sin(vkt)/vkt after averaging over the direction of the
needle. Remarkably, we find that this sinc function (dot-
ted-dashed lines) describes the simulation data nicely for
Pe = 125 and kL = 4 [Fig. 3(b)], yet it fails to capture the
dynamics for slower self-propelled agents (Pe < 31) and
their motion at smaller length scales (kL = 50).

Moreover, the oscillations of the ISF become weaker at
smaller length scales (kL = 50) [Figs. 3(a)], where transla-
tional diffusion becomes important. In particular, the tube is
effectively leading to an infinite entropic barrier along the
perpendicular direction, permitting only reptation motion
along the long axis. Thus, for a passive filament (Pe = 0) we

recover an algebraic decay ~¢~!/2 of the ISF at intermediate
times (2 x 1072 < ¢/7%, < 2 x 10°) [Fig. 3(a) inset], which
reflects the sliding motion of the filament from one tube to the
next. In fact, this power law is hidden in Eq. (6) and can be
evaluated in a closed form in the highly entangled regime

(Pe =0, 7,y & o, and D, — 0), which yields F(k,?) =

exp(—kzDJ_z‘)/\/4k2 (D — D, )t/x [40]. For intermediate

Péclet numbers (31 < Pe < 125), self-propulsion of the
neighboring filaments causes a dilation of the effective tube
dynamics, thus speeding up the relaxation process. In
particular, the ISF decays to the terminal region exponen-
tially fast [Fig. 3(a) inset].

At length scales larger than the persistence length of the
active agents, i.e., kvt < 2z, the swimming direction is
randomized and the ISF can be approximated by a relaxing
exponential reflecting effective diffusion, F(k,1) =~
exp(—k?Dygt) [51]. The ISF for kL = 10~ and Pe =
125 decorrelates faster for increasing number densities n*,
which represents a characteristic feature for crowding-
enhanced transport [Fig. 3(c)]. Moreover, the simulation
data for n* <256 are described by effective diffusion,
while for larger number densities the dynamics are still
determined by the directed motion of the active agent as the
crowded environment suppresses rotational diffusion.

Summary and conclusion.—Using a minimalistic model
system for a solution of active, thin, stiff filaments, we find
that transport of its individual components is enhanced by
orders of magnitude due to crowding. This finding is
indeed counterintuitive and yet in nonequilibrium systems
no fundamental law prevents it. Our study, based on the
tube concept pioneered by Doi and Edwards [41], shows
that the nature of these transport features relies on the
topological constraints of the crowded environment
imposed on the swimming direction of the filament. In
particular, crowding suppresses the rotational diffusion of
self-propelled filaments and thus the swimming directions
are preserved for long times, leading to an increased
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effective diffusion. The tube theory provides a scaling law
for the effective diffusivity with respect to crowding and
swimming velocity and thereby allows for a full spatio-
temporal characterization of the active agents. Specifically,
an exact expression for the ISF unequivocally predicts the
dynamics over 6 orders of magnitude in time and 5 orders of
magnitude in space, valid for all Péclet numbers. These
findings are remarkable as they represent one of the rare
cases, where an exact theory can be elaborated for strongly
interacting, nonequilibrium systems.

Crowding-enhanced diffusion is a generic mechanism
that could occur for any self-driven anisotropic particles in
crowded environments. There are various experimental
realizations of our model system, both on the macroscale
and the microscale, to verify our predictions. On the
macroscale, the dynamics of thin rigid needles, equipped
with a self-propelling motor, can be studied under micro-
gravity in high entanglement [52,53]. On the microscale,
motile objects, such as rodlike bacteria, stiff microtubules
[54,55], and activated nanotubes represent potential real-
izations (see Refs. [56,57] for recent reviews) that could
display crowding-enhanced diffusion. Moreover, the exact
expression for the ISF can be used to extract the motility
parameters (Pe, 7., DH, and D ) for strongly interacting,
nonequilibrium systems via direct comparison with simu-
lations or experimental data obtained, for example, by
differential dynamics microscopy [58,59].

Our theory lays the foundation to study the dynamics of
self-driven anisotropic particles in the nematic phase,
where the constraint of the large-aspect ratio of the single
constituents is relaxed. Then, in principle, the use of a tube
concept is no longer justified. Computer simulations of
passive hard spherocylinders have been performed along
this direction and predict enhanced long-time transport
across the isotropic-nematic transition due to orientational
ordering [60], reminiscent of our findings. Yet, an analyti-
cal theory has not been developed and an extension of our
theory for the behavior at the phase transition might explain
these simulation data.

Beyond these fundamental interests, our findings pro-
pose a potential way to optimize transport of self-driven
anisotropic particles in real, densely packed biological
environments or microfluidic devices. The efficient
dynamic behavior of these anisotropic particles could be
a starting point to design biologically inspired materials,
e.g., synthetic cells [6,7] or microrobots [61]. Moreover, we
note that the present work focuses on self-driven stiff
filaments, yet most of the biofilaments present in nature are
semiflexible [62-67]. Therefore, a future challenge is to
extend our current study to include a finite bending
flexibility and identify the disengagement time as a
function of swimming speed.
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