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In triangular lattice structures, spatial anisotropy and frustration can lead to rich equilibrium phase
diagrams with regions containing complex, highly entangled states of matter. In this work, we study the
driven two-rung triangular Hubbard model and evolve these states out of equilibrium, observing how the
interplay between the driving and the initial state unexpectedly shuts down the particle-hole excitation
pathway. This restriction, which symmetry arguments fail to predict, dictates the transient dynamics of the
system, causing the available particle-hole degrees of freedom to manifest uniform long-range order.
We discuss implications of our results for a recent experiment on photoinduced superconductivity in
κ − ðBEDT − TTFÞ2Cu½NðCNÞ2�Br molecules.
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Introduction.—Identifying and understanding the proc-
esses which prevent thermalization and decoherence in
driven-dissipative quantum systems [1] is a unifying theme
in ultracold atoms and condensed matter research [2,3].
This comes with the potential to realize and functionalize
exotic out-of-equilibrium quantum phases, both for the
continued progress of fundamental research and for wider
technological purposes. In ultrafast materials science, the
counterintuitive experimental observation of light-induced
superconductivity [4–12] has stimulated the field. In these
experiments intense laser pulses have been reported to
induce superconducting features, such as an inverse-fre-
quency divergence of the imaginary part of the optical
conductivity and vanishing resistivity, well above the
materials’ equilibrium critical temperatures Tc.
In a very recent experiment, specific vibrational

modes of the charge-transfer salt κ − ðBEDT − TTFÞ2
Cu½NðCNÞ2�Br were resonantly excited with midinfrared
radiation and the above-mentioned optical features were
induced at temperatures several times higher than Tc [11].
Moreover, following excitation, a large gap in the real part
of the optical conductivity opened up—a feature not seen
when cooling the molecular crystal below Tc. These results
suggest a different mechanism for superconductivity
compared to that when cooling the material. Within
Ref. [11], a minimal microscopic two-rung triangular
Hubbard lattice, with time-dependent parameters under
resonant driving of specific phonon modes, was proposed
as a model for the experiment.
A number of theoretical studies have explored the effects

of carefully tuned coherent driving on the prethermal
dynamics of one and two dimensional bipartite fermionic

lattice models [13–20]. These studies are motivated by the
opportunities arising from having dynamical time-
dependent Hubbard parameters, which have been experi-
mentally realized in contexts ranging from quantum
simulators [21] to strongly correlated materials via
electronic [22–24] as well as vibrational excitations [25].
Their relevance, however, to organic materials such as the
κ − ðBEDT − TTFÞ2X compounds is unclear, due to the
dimerized BEDT − TTF molecules forming a half-filled
triangular, nonbipartite lattice [26–29]. Instances of the
triangular Hubbard model, alongside other nonbipartite
Hubbard lattices, do not possess the same symmetries as
their hypercubic counterparts and the frustration and
hopping anisotropy can lead to rich equilibrium phase
diagrams containing unique states of matter [30,31].
In this Letter, we demonstrate how the interplay between

such equilibrium states and generic periodic driving
manifests complex nonequilibrium behavior in a triangular
Hubbard model. Motivated by the results of Ref. [11], and
the opportunity to explore the many-body dynamics of a
driven frustrated system, we consider the time-dependent
two-rung triangular Hubbard model and identify two
distinct phases when driving the ground state out of
equilibrium. Beneath a critical value of the vertical hopping
integral τ0 < τ0c there is a unique phase where the particle-
hole excitation pathway is unexpectedly blocked. This
impedance, which symmetry arguments fail to predict,
causes the driving to establish amplified, coherent, long-
range particle-hole order in the available degrees of
freedom. As τ0 increases across the critical value τ0c, this
restriction in the particle-hole channel is lifted and the
driven system cannot dynamically sustain order due to the
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creation of a number of incommensurate particle-hole
excitations.
We proceed to identify the origin of these distinct

regimes—a rich ground state phase diagram with properties
not seen in hypercubic realizations of the Hubbard model.
When τ0 < τ0c, the system forms a spin-wave condensate
with an extensive interference pattern induced by the
anisotropic geometry of the system. The condensed nature
of this initial state prevents the driving from causing
excitations in the particle-hole SU(2) pathway and leads
to the observed induction of long-range order. For τ0 > τ0c
this spin-wave condensate is depleted and the driving
produces excitations which instigate the decay of any
particle-hole correlations.
Finally we show how, even for a small amplitude pulse,

driving the spin-condensed initial state near resonance
causes rapid relaxation toward a doublon-ordered state.
The parameters we use reflect the dynamical electronic
properties of the photoexcited κ − ðBEDT − TTFÞ2
Cu½NðCNÞ2�Br molecules in Ref. [11]. We thus offer a
possible explanation for the physical mechanism that
underlies the transient onset of superconductivity observed
in this experiment. More broadly, our results provide an
understanding of how geometrical effects can significantly
alter the nonequilibrium behavior of driven systems.
Model and method.—The Hubbard model is a para-

digmatic quantum lattice model which has relevance for
high-temperature superconductivity [32], can be realized in
ultracold atom experiments [33], and is solvable using the
Bethe ansatz in one dimension [34–36]. The rich symmetry
structure of the model is responsible for this solubility. On a
bipartite lattice, there are two SU(2) symmetries, known as
the “spin” and “η” symmetries [37], which play a signifi-
cant role in the physics of the model. For example, driving
and dissipative terms which preserve the η symmetry have
been shown to guide the system into steady states with
long-range correlations in the η channel, a phenomenon
named heating-induced order [38].
Here, we focus on the role of heating in the dynamics

of a driven nonbipartite two-rung triangular Hubbard

model, where the η symmetry does not exist. The
Hamiltonian is

HðtÞ ¼ −τðtÞ
X

ij∈hdiagi;σ
ðc†σ;icσ;j þ H:c:Þ

− τ0
X

ij∈hverti;σ
ðc†σ;icσ;j þ H:c:Þ þ UðtÞ

X

i

ni;↑ni;↓;

ð1Þ

where nσ;i, c
†
σ;i, and cσ;i are, respectively, number, creation,

and annihilation operators for fermions of spin σ ∈ f↑;↓g
on site i. In Eq. (1), the first summation is a time-dependent
hopping term, with strength τðtÞ, over the diagonal nearest-
neighbor bonds pictured in Fig. 1. The second summation
is the hopping term τ0HV over the vertical bonds and the
last term is a time-dependent interaction term, with strength
UðtÞ. We consider a half-filled lattice with L sites and a
total magnetization of 0.
The time dependence of the nearest-neighbor hopping

and interaction strengths is

τðtÞ ¼ τ̄f1þ Aτsin2ðΩtÞ exp½−ðt − TpÞ2=ð2T2
wÞ�g;

UðtÞ ¼ Ūf1þ AUsin2ðΩtÞ exp½−ðt − TpÞ2=ð2T2
wÞ�g; ð2Þ

which constitutes a fairly general parametrization of the
Hamiltonian parameters. In Eq. (2), AU and Aτ are the
amplitudes of the modulation of U and τ relative to their
equilibrium values Ū and τ̄. The frequency of the oscil-
lations is Ω, while Tp and Tw describe the offset and width
of the Gaussian envelope containing these oscillations. Our
observations in this Letter are not specific to the parameters
of the driving. In the Supplemental Material (SM) we
demonstrate our results choosing different parameters to
those in the main text [39].
We start by identifying the symmetry structure of HðtÞ.

First, we show that there is a permanent spin SU(2)
symmetry ½HðtÞ; S�;z�≡ 0 where S� and Sz are the total
spin raising or lowering and counting operators, respec-
tively [35]. We also find

½HðtÞ;ηz�≡0; ½HðtÞ;ηþη−�¼ ½τ0HV;ηþη−�∝ τ0; ð3Þ

where

ηþ¼
X

i

fðiÞc†i;↑c†i;↓; ηz¼
X

i

ðn↑;iþn↓;i−1Þ; ð4Þ

and η− ¼ ðηþÞ† are the total η operators and act on the
doublons (locally paired fermions) and holons (empty sites)
within the lattice. In Eq. (4), fðiÞ takes the value þ1ð−1Þ
for the blue (gray) lattice sites in Fig. 1. Equation (3)
reveals that for finite τ0 the system does not possess an
η SUð2Þ symmetry due to the presence of the vertical
hopping term HV . We emphasize that even in the bipartite
limit τ0 → 0, the system is not equivalent to the 1D

FIG. 1. First eight sites of the two-rung triangular Hubbard
model described by Eq. (1). The model has a time-dependent
nearest-neighbor hopping τðtÞ, static vertical hopping τ0, and a
time-dependent local Hubbard interaction UðtÞ. The outer (blue)
vs central (gray) sites represent a bipartite splitting of the lattice in
the limit τ0 ¼ 0.
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Hubbard model due to the differing coordination numbers
on the blue vs gray sites.
With this knowledge of the symmetries in hand, we

extend the methodology of [40–42] and propose that, in the
long-time limit of HðtÞ, the system will reach a state of
maximum entropy subject to the constraint that expectation
values of conserved quantities must be preserved. If HðtÞ
possesses an SU(2) symmetry, this constraint leads to
heating-induced order, with the long-time state guaranteed
to have uniform, long-range correlations in the conserved
symmetry sector [38,43]. Meanwhile, for the symmetries
that HðtÞ does not preserve, a large number of incom-
mensurate excitations will be created—causing the decay
of correlations in the corresponding sectors [38]. Hence, we
expect that for finite τ0 large amplitude driving from Eq. (2)
should cause the particle-hole correlations to quickly decay
away due to the lack of an η SU(2) symmetry for HðtÞ.
Results.—In the following we investigate this, initializ-

ing the system in the ground state of Hð0Þ and time
evolving it underHðtÞ. We quantify the correlations in the η
symmetry sector using the particle-hole function
jhηþi η−j iðtÞj which describes the mobility of a doublon
between sites i and j at time t. We also introduce the
doublon order parameter

DδðtÞ ¼ ð1=NÞ
X

ij
ji−jj≥δ

jhηþi η−j iðtÞj; ð5Þ

where N is a constant such that DδðtÞ is the average of the
particle-hole function for distances greater than δ − 1.
In Fig. 2 we drive the system with a long, large-

amplitude pulse for different values of τ0. We observe that
for τ0 ≠ 0, hηþη−i is not conserved as expected. The plots in
Fig. 2, however, reveal that there is a critical value

of τ0 where the behavior of the system in the particle-hole
channel changes significantly under driving. For τ0 < τ0c ≈
0.69τ̄ uniform, doublon order forms on transient
timescales and follows closely the τ0 ¼ 0 evolution, despite
the absence of the requisite symmetry. Meanwhile, for τ0 >
τ0c the system’s response in the particle-hole sector is much
less ordered and the corresponding off-diagonal correla-
tions quickly decay away. This distinct change in the
system’s behavior is underpinned by the action of the
vertical hopping termHV . In Figs. 2(b) and 2(c) we see that
for τ0 < τ0c this term effectively acts like an annihilation
operator which shuts down the particle-hole excitation
pathway, preventing hηþη−i from changing significantly
and inducing long-range order among the available
particle-hole correlations. As τ0 increases above τ0c this is
no longer the case and the rate of change of hηþη−i jumps
by over an order of magnitude due to the creation of
incommensurate particle-hole excitations which prevent
robust order from being established in this sector.
We now probe the origin of these two distinct phases,

calculating the properties of the ground state of the system
which we drove out of equilibrium. In Fig. 3 we observe a
rich phase diagram for the ground state of Hð0Þ in terms of
hηþη−i and hSþS−i. We also provide plots of the two-point
correlations for states within these diagrams, alongside a
finite-size scaling analysis which indicates the phases we
observe persist in the thermodynamic limit [39].
Within region I of Fig. 3(a) the ground state of the system

resides in the lowest eigenspace of hηþη−i. Here, the
system displays the properties of a spin-wave condensate
through the large value of hSþS−i underpinned by long-
range spin-exchange order and a sharp 0 momentum peak
in the corresponding structure factor. There are, however,
two additional peaks of opposite momenta which

(a) (b) (c)

(d) (e) (f) (g)

FIG. 2. Dynamics of the half-filled L ¼ 14-site two-rung triangular Hubbard model. The system is initialized in the ground state of
Hð0Þ, setting Ū ¼ 5.0τ̄ with the specified τ0 and time-evolved under HðtÞ, using the same Ū and τ0, with AU ¼ −0.75, Aτ ¼ AU=2,
Ω ¼ 2.5τ̄, Tp ¼ 0, and Tw ¼ ∞. (a) Long-range doublon order D4ðtÞ versus time, where D4ðtÞ is defined in Eq (5). (b) Evolution of
hH2

Vi, where τ0HV corresponds to the second hopping term in Eq. (1). (c) Evolution of hηþη−i. (d)–(g) Time and distance dynamics of
the particle-hole correlations for τ0 ¼ 0.2τ̄, 0.4τ̄, 0.9τ̄, 1.4τ̄, respectively.
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correspond to interference in the condensate order due to
further correlations between the central and outer sites of
the lattice. This spin-wave condensate arises from the
irregular geometry of the lattice and is not possible in
hypercubic realizations of the half-filled Hubbard model,
where the ground state always has hSþS−i ¼ 0.
As τ0 increases, the value of the condensate order

parameter hSþS−i jumps discontinuously and the system
undergoes a first-order phase transition into region II. In
this phase, some of the vertically bonded sites localize and
form singlets separate from the rest of the system, in which
only small signatures of the condensate order observed in
the previous phase remain. For even higher τ0 the system
undergoes another first order phase transition into region
III. Here, the vertical hopping is sufficiently large to create
a spin-dimerized phase where all the vertically bonded sites
form singlets decoupled from the central sites.
For finite-size systems the I–II transition occurs along

the leftmost red dotted line in Fig. 3, where the condensate
order parameter hSþS−i first jumps discontinuously. This is
consistent with the critical change in nonequilibrium
behavior observed for τ0 ≈ 0.69τ̄ in Fig. 2. Our finite-size
scaling analysis indicates, however, that in the thermo-
dynamic limit this transition, which is of first-order, occurs
along the black-dotted line instead. This is because, as
system size increases, the properties of the system in the
light-blue region in Fig. 3(b) converge to those of phase I.
We thus anticipate that the critical change in the non-
equilibrium dynamics that we observed in Fig. 2 will occur
at the higher value of τ0c ≈ 0.86τ̄ when L → ∞.
We understand this critical change in the nonequilibrium

dynamics through the action of the vertical hopping term
HV in the different phases. In region I HV acts as an
annihilation operator, leading to the approximate conser-
vation of hηþη−i and the formation of doublon-holon order.
This action can be understood from the spin-wave nature of

the ground state and that HV only acts in the sublattice
containing the outer sites of the system (marked in blue in
Fig. 1). In this sublattice the spin-exchange correlations are
large, positive, and completely uniform with distance and
so the two-site reduced density matrix (RDM) will be
dominated by terms such as ðj↑↓i þ j↓↑iÞðh↑↓j þ h↓↑jÞ;
which are annihilated by a Hubbard hopping operator.
Moreover, on short timescales the driving acts mainly to
modify the longer-range correlations in the system, tran-
siently preserving the form of the two-site RDM on
neighboring sites and thus the action of HV as an
annihilation operator. Meanwhile, in phases II and III,
the condensate order disappears and the vertically bonded
sites begin to form singlets. A hopping term will map a
singlet onto an orthogonal state and thus HV has a
significant effect when acting on the ground state. In the
SM we reinforce these statements by plotting the two-site
RDM in all three regions and computing the square-norm
of HV for the full phase diagram in Fig. 3. We also plot the
resulting dynamical conservation, or lack thereof, of
hηþη−i for various different driving parameters [39].
In Figure 2 we drove the system with a long, large

amplitude pulse, demonstrating the formation of stable
doublon order for τ0 < τ0c. In Fig. 4 we consider a larger
system and use a shorter-lived, smaller amplitude pulse to
drive the system out of equilibrium for τ0 < τ0c, showing
that the annihilative action ofHV still dictates the dynamics
of the system. We focus on the role of the driving

(a) (b)

FIG. 3. (a),(b) Map of hηþη−i and hSþS−i versus Ū and τ0 for
the ground state of the L ¼ 32-site two-rung triangular Hubbard
model. The red dotted lines separate the three distinct phases or
regions—I, II, and III—observed for this system size, their
properties are described in the main text. In the thermodynamic
limit the width of region I changes and the I–II transition instead
occurs along the black dotted line.

(a) (b)

(c) (d)

FIG. 4. Dynamical properties of the half-filled L ¼ 32-site two-
rung triangular Hubbard model. The system is initialized in the
ground state of Hð0Þ, with Ū ¼ 4.8τ̄ and τ0 ¼ 0.25τ, and evolved
under HðtÞ with the same Ū and τ0 while AU ¼ −0.15,
Aτ ¼ AU=2, Tp ¼ 5.0τ̄, Tw ¼ 2.5τ̄ with the specified ω ¼ 2Ω.
(a) Ratio of the long-range doublon order DL=2ðtÞ, see Eq. (5), at
times tf τ̄ ¼ 10 and t ¼ 0 versus ω. (b) Energy difference
between the initial state and that at time tf τ̄ ¼ 10.0 [where
EðtÞ ¼ hHð0ÞiðtÞ]. (c),(d) Time and distance dynamics of
jhηþi η−iþδij for ω ¼ 4.5τ̄ and ω ¼ 8.5τ̄, these frequencies are
marked in (b). The parameters used to create (c) reflect the
electronic changes induced by the driving of κ − ðBEDT −
TTFÞ2Cu½NðCNÞ2�Br in Ref. [11].
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frequency, plotting the long-range order and absorbed
energy as a function of the “bare” frequency ω ¼ 2Ω
[the pulse form is sin2ðΩtÞ� in Figs. 4(a) and 4(b). These
quantities both display doubly peaked profiles, with the
peaks in the doublon order coinciding with those of the
absorbed energy. This is indicative of heating-induced
order, with the system relaxing to an ordered state due
to the approximate conservation of hηþη−i as it gains
energy [38].
We further illustrate this by showing the explicit evolu-

tion of the particle-hole correlations for two different
frequencies in Figs. 4(c) and 4(d). There is a slower
induction of order at the higher frequency, with the system
also absorbing less energy from the driving field. Despite
the finite value of τ0 we see the system is transiently
relaxing toward a state with amplified, uniform off-
diagonal correlations.
Interestingly, in Figs. 4(a) and 4(b), for ω ≈ 2U the

system absorbs the most energy and yet less long-range
doublon order is induced compared to the first peak. This
first peak is broad and shifted from ω ¼ U, which is
consistent with the pulse causing a number of excitations
which all evolve differently and are necessary for the
successful re-arrangement of the particle-hole degrees of
freedom. The second peak is of a sharp, nondispersive
nature, containing only a small number of excitations which
remain localized during the time evolution. Here, the time
dynamics has become diabatic: the driving frequency is the
dominant timescale and is too rapid for the system to
significantly adapt its spatial configuration [18,39,41].
Conclusion.—We have studied the dynamics of the

anisotropic driven two-rung triangular Hubbard model,
showing how the rich ground state properties interact with
the driving to create a phase which symmetry arguments
fail to predict. In this phase, particle-hole excitations are
prevented, causing the system to relax toward a state with
amplified, uniform, particle-hole correlations.
The choice of a triangular Hubbard model was partly

motivated by the role it has played in the modeling of the
κ − ðBEDT − TTFÞ2X compounds. The rich dynamical
behavior which occurs under driving may therefore be
observable in these materials. Along these lines, the
Hamiltonian in Eq. (1) was proposed as a model for a
recent experiment optically exciting the vibrational modes
of κ − ðBEDT − TTFÞ2Cu½NðCNÞ2�Br [11]. The mani-
festation of particle-hole order we have witnessed here
provides a potential explanation for the observed onset of
light-induced superconductivity in this experiment. The
experimental parameters are consistent with the system
being driven close to ω ¼ U from within the spin-wave
condensate phase and, more specifically, the Hamiltonian
parameters and driving terms used in Fig. 4(c) were based
on frozen-phonon simulations which determined the elec-
tronic properties of the photoexcited κ − ðBEDT −
TTFÞ2Cu½NðCNÞ2�Br molecules in Ref. [11].

More generally, the two-rung triangular Hubbard model
allowed us to study the dynamics of a nonequilibrium,
geometrically frustrated lattice structure. We anticipate that
other systems which possess geometries characterized by
frustration, inhomogeneous coordination numbers, and
anisotropic hopping terms—such as kagome lattices
[44], optical quasicrystalline structures [45], and doped
cuprates [46]—will display similarly rich nonequilibrium
physics.
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