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The elementary excitations of a fractional quantum Hall liquid are quasiparticles or quasiholes that are
neither bosons nor fermions, but are so-called anyons. Here we study impurity particles immersed in a
quantum Hall liquid that bind to the quasiholes via repulsive interactions with the liquid. We show that the
angular momentum of an impurity is given by the multiple of a fractional “quantum” of angular
momentum, and can directly be observed from the impurity density. In a system with several impurities
bound to quasiholes, their total angular momentum interpolates between the values for free fermions and
for free bosons. This interpolation is characterized by the fractional statistical parameter of the anyons,
which is typically defined via their braiding behavior.
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Introduction.—When quasiparticles emerge from
strongly correlated quantum matter, their properties can
be quite different from those of the matter particles. A
paradigm are bulk excitations in fractional quantum Hall
(FQH) liquids: the liquid is made of interacting electrons,
but its excitations appear as fractional electrons, having
fractional charge, fractional angular momentum, and frac-
tional exchange statistics [1–4]. With this, they are neither
bosons nor fermions, but are so-called anyons. To date, the
best experimental evidence of fractional quasiparticles is
obtained by determining the fractional charge via shot noise
measurements [5]. Fabry-Perot interferometry [6–8] and
beam splitter experiments [9] have provided signatures of
fractional statistics. Strong efforts to improve the exper-
imental evidence of anyons concern the implementation of
FQH physics in highly controllable quantum systems such
as cold atoms [10,11] or photonic quantum simulators [12].
Light-matter interactions can create and trap fractional
quasiparticles in atomic gases [13] or electronic systems
[14], and may facilitate braiding operations [13,15–17]. It
has also been suggested to observe the fractional exclusion
principle spectroscopically in atomic systems [18], gra-
phene [19], or magnetic materials [20]. Moreover, signa-
tures of fractional statistics are carried by the total angular
momentum of a fractional quantum Hall system, which can
be measured by time-of-flight imaging [21]. It has also
been proposed to engineer anyonic systems through appro-
priately defined bath interactions [22,23]. Various works
propose to use impurities that bind to fractional quasipar-
ticles [24–28], and which then exhibit features such as
fractional relative angular momentum [24], non-Abelian or
Abelian statistics [25,26], or quantized transport proper-
ties [27,28].

Here, we take up the idea of binding impurities to
quasiholes in a FQH liquid. First, we consider a single
impurity and show that its angular momentum is fractional
(in units ℏ≡ 1). Then, by adding more impurities, taken as
noninteracting fermions, we observe how the “anyon sea”
is filled. Specifically, we show that the total angular
momentum of the impurities matches neither the value
from a fermionic construction—that is, by filling the single-
particle levels—nor the value of bosonic condensation.
Instead, the total angular momentum is reproduced by a
linear interpolation between fermionic and bosonic distri-
bution, proportional to α ¼ 1 − ν. Here, ν is the filling
factor of the FQH liquid, and α equals the anyons’
statistical parameter.
While our results are obtained by numerically solving

the underlying quantum Hall model, they can also be
understood from fundamental theoretical concepts, and
may thus serve as an illustration thereof. In fact, the
relation of anyonic physics and fractional quantization of
angular momentum dates back to earliest work on the
subject: in Wilczek’s picture of anyonic statistics [2], the
fractional behavior emerges through the attachment of
matter particles to fluxes, i.e., vortex lines. In Laughlin’s
wave function for FQH liquids [3], the matter particles
appear as fluxes seen by the quasihole, and on a mean-field
level, this flux attachment redefines the quasiholes’ effec-
tive vacuum, i.e., the effective magnetic field seen by the
quasiholes. In Ref. [24], this reasoning has already been
employed to explain the fractional relative angular momen-
tum between two anyons, which can be measured via the
correlation function of impurities bound to quasiholes. In
the present Letter, we demonstrate that the properties of the
anyon vacuum and fractional angular momentum can even
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be probed with a single excitation. The fractionalization of
angular momentum can directly be inferred from the
density of impurities bound to quasiholes, making it easily
accessible in experiment.
The characterization of the single-particle levels provides

crucial information that we then use to reveal the anyonic
quantum statistics of the impurities. Usually, the statistical
behavior of anyons is defined by considering adiabatic
braiding operations [4]. In contrast, this Letter examines
how the many-body angular momentum of several impu-
rities is composed of the single-particle values, which
yields an immediate fingerprint of the distribution function
describing the anyon statistics. In accordance with the
general expectation [29], this distribution interpolates
between Bose and Fermi statistics, and, strikingly, even
for very small systems, the statistical parameter obtained
from the interpolation agrees almost perfectly with the
predictions from an effective impurity Hamiltonian [26].
System.—The system consists of two types of particles a

and b: majority particles (a type) form a FQH liquid with
Landau filling fraction ν ¼ 1=q, in which impurity particles
(b type) are immersed. For simplicity, we assume similar
single-particle physics for both species: they have equal
massM, are trapped in the xy plane by harmonic potentials
of frequencies ωa and ωb, and are brought into the lowest
Landau level by a sufficiently strong gauge potential
A ¼ ðB=2Þð−y; x; 0Þ. In this gauge, the Fock-Darwin
functions, φmðzÞ ¼ ð2πm!2mÞ−1=2zme−jzj2=4, are character-
ized by an angular momentum quantum number m. The
corresponding single-particle energies are ϵm;s ¼ ℏmΩs,

with s ∈ fa; bg, and Ωs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
B þ ω2

s

p
− ωB. Here, ωB ¼

eB=M is the cyclotron frequency, with e as the electric or
synthetic charge of the particles. The coordinates z ¼ ðxþ
iyÞ=lB are given in units of the oscillator length
lB ¼ ðℏ=MΩsÞ1=2, which depend on the trapping fre-
quency. We assume ωa ≈ ωb ≪ ωB, such that Ωa ≈ Ωb,
and the length scale lB takes the same value for both a
and b.
To make the a particles form a FQH liquid, we con-

sider repulsive interactions. Conveniently, interactions are
expressed by Haldane pseudopotentials Ul, which para-
metrize the strength of interactions for pairs of particles
with fixed relative angular momentum l [30]. By truncat-
ing the pseudopotential expansion at l ¼ q (i.e., by setting
Ul ¼ 0 for l ≥ q), we obtain a parent Hamiltonian for
the Laughlin liquid at ν ¼ 1=q. Its ground state is
exactly given by the Laughlin wave function Ψq ∼Q

i<j∈aðzi − zjÞqe−
P

i
jzij2=4, and it has zero interaction

energy. The total angular momentum of the Laughlin
ground state is Lq ¼ ðq=2ÞNaðNa − 1Þ, with Na as the
number of a particles. No eigenstates of zero interaction
energy are possible for La < Lq, and, within the Hilbert
space with La ¼ Lq, the Laughlin wave function Ψq is
nondegenerate. Laughlin liquids can be formed either by

fermionic or bosonic a particles, depending on whether q is
odd or even.
When the angular momentum of the liquid is increased

above Lq, i.e., for La ¼ Lq þ d with d > 0, the liquid can
accommodate a characteristic number N d of zero-energy
modes. Their wave function is of the form Ψα

q;d ¼
fαdðfzigÞΨq, where fαdðfzigÞ is an arbitrary symmetric
polynomial of degree d. The index α runs from 1 to
N d, andN d equals the number of partitions of the positive
integer d. These states describe deformations at the edge,
when d ∼ 1, but for d ∼ Na they may also describe quasi-
holes in the bulk. Specifically, the functionΨq;qh ∼

Q
iðw −

ziÞΨq describes a quasihole at position w. For w ¼ 0, the
factor

Q
iðw − ziÞ becomes a symmetric polynomial of

degree d ¼ Na, and the state belongs to the manifold of
zero-energy solutions at La ¼ Lq þ Na.
The b species are taken as noninteracting fermions. To

bind to quasiholes of the Laughlin liquid, we consider a
sufficiently strong repulsive contact interaction between a
and b particles. This interaction allows for the exchange of
angular momentum between the species, but the joint
angular momentum L ¼ La þ Lb remains a conserved
quantity. For the case of a single impurity, the quasihole
state Ψq;imp ∼

Q
iðw − ziÞΨq is a state of zero interaction

energy, where the dynamical variable w represents the
position of the impurity. The interspecies repulsion makes
this state nondegenerate at L ¼ Lq þ Na, and no zero-
energy states exist at L < Lq þ Na. Degenerate zero-
energy solutions exist at L ¼ Lq þ Na þ d with d > 0,
of the form Ψα

q;m1;m2
∼ wm1fαm2

ðfzigÞ
Q

iðw − ziÞΨq, where
m1 and m2 are positive integers with m1 þm2 ¼ d. Thus,
the number of zero-energy modes at L ¼ Lq þ Na þ d is
given by N d;imp ¼

P
d
m2¼0N m2

, see Table I.
Results for a single impurity.—The Laughlin state Ψq

can be seen as an effective impurity vacuum, and the states
Ψq;imp and Ψα

q;m1;m2
define the ground state and excited

states of a single impurity. These states have total angular
momentum L ¼ Lq þ Na and L ¼ Lq þ Na þm1 þm2,
but it is not immediately clear how the angular momentum
is distributed between the two species. Let L0

b denote the
average angular momentum of the impurity in its ground
state, i.e., L0

b ≡ hΨq;impjL̂bjΨq;impi with L̂b the angular
momentum operator for the b particle. Naïvely, one may
expect that the angular momentum Lm

b of an impurity in its
mth excited state, i.e., Lm

b ≡ hΨα
q;m;d−mjL̂bjΨα

q;m;d−mi, is

TABLE I. Number N d of edge modes in the Laughlin liquid of
degree d, and numberN d;imp of zero-energy modes of degree d in
the presence of an impurity.

d 0 1 2 3 4 5 6
N d 1 1 2 3 5 7 11
N d;imp 1 2 4 7 12 19 30
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given by Lm
b ¼ L0

b þm. However, as we show below, this is
not the case. Instead, the angular momenta of impurity
levels differ by multiples of a fractional value, suggesting
the interpretation of fractional quantization.
Analytical arguments for this behavior are based on the

notion that the impurity at w “sees” the majority particles
at zi as fluxes, reducing the effective gauge field for the
impurity to B� ¼ B − 2πl2

BρaB ¼ Bð1 − νÞ, where ρa is
the density of the majority particles [24]. This leads to an
increased magnetic length scale l�B ¼ lB=

ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p
. Thus,

the renormalized wave functions for a single impurity are
given by

φ̃mðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − νÞmþ1

2π2mm!

r
wme−ð1−νÞjwj2=4: ð1Þ

In the limit of ν ¼ 0, this wave function is identical to the
unrenormalized wave function φmðwÞ. The density corre-
sponding to φ̃m is given by

ρ̃mðwÞ ¼ jφ̃mðwÞj2 ¼
ð1 − νÞmþ1

2π2mm!
jwj2me−ð1−νÞjwj2=2

¼
X∞
n¼0

ρmþnðwÞνnð1 − νÞmþ1
ðmþ nÞ!
m!n!

: ð2Þ

In the second line, we have expanded the renormalized
density ρ̃m in terms of unrenormalized densities
ρnþm ¼ jφnþmj2, corresponding to angular momentum
nþm. Thus, the average angular momentum Lm

b of an
impurity in level m is given by

Lm
b ¼

X∞
n¼0

ðnþmÞνnð1 − νÞmþ1
ðmþ nÞ!
m!n!

¼ mþ ν

1 − ν
: ð3Þ

In its ground state (m ¼ 0), the impurity has average
angular momentum value L0

b ¼ ν=ð1 − νÞ, and exciting
the impurity by one unit (from m to mþ 1) changes the
average angular momentum by ΔLb ¼ 1=ð1 − νÞ > 1.
The standard deviation is δLm

b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðmþ 1Þp

=ð1 − νÞ, so
the relative error δLm

b =L
m
b → 0 for large m.

We have used different methods to verify these results
numerically: (i) applying numerical diagonalization to the
pseudopotential Hamiltonian at fixed total angular momen-
tum L, the analytical construction of the zero-energy modes
can be verified, and in particular the counting of Table I. We
lift the ground state degeneracy N d;imp at L ¼ Lq þ Na þ
d by choosing the trap frequency ωa slightly larger than ωb.
The states within the quasidegenerate manifold are then
energetically ordered decreasingly with the excitation level
m of the impurity: the unique ground state is Ψq;d;0,
followed by Ψq;d−1;1, and subsequently two degenerate
states Ψα

q;d−2;2, etc. The corresponding impurity angular

momentum hL̂bi is immediately obtained from the

numerical solution, and for each m ≤ d, we find N d−m
degenerate states, in which the impurity’s angular momen-
tummatches very well with the theoretically expected value
Lm
b ¼ L0

b þmΔLb. This behavior is exemplified in Fig. 1
for two cases corresponding to Laughlin filling factors
ν ¼ 1=3 and ν ¼ 1=5. In this example, we have chosen
d ¼ 4 yielding 12 quasidegenerate states (left of the red-
dotted vertical line).
(ii) Equation (3) can also be verified by evaluating the

impurity angular momentum from the first-quantized wave
functions, either by symbolical operations (cf. Ref. [31]), or
by attaining much larger system sizes (e.g., Na ∼ 40),
numerically via the Monte Carlo integration method. We
have used this method to determine the impurity angular
momentum of Ψq;1;0 for 2 ≤ q ≤ 6, which is accurately
given by L0

b.
The fractional “quantization” of angular momentum is

reflected by the impurity density, plotted in Fig. 2(a).
Higher orbitals correspond to larger angular momenta and
are characterized by broader density profiles. More quan-
titatively, there is a linear relation between the mean
square of the radial position, hr2i, and the angular
momentum m. In the absence of a liquid (i.e., for
ν ¼ 0), we have hr2im ≡ R∞

0 drr3jφmðrÞj2 ¼ 2mþ 2. As
we find numerically, the slope of this curve changes at finite
ν [see Fig. 2(b)]. In this case, hr2im;q ≡

R
∞
0 drr3ρm;q

b ðrÞ,
where the impurity density ρm;q

b ðrÞ corresponds to a many-
body state Ψα

q;m;d−m and is essentially independent from the
choice of d and α. Specifically, at ν ¼ 0, the slope of value
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FIG. 1. We plot the angular momentum hL̂bi of an impurity in a
Laughlin liquid at (a) ν ¼ 1=3 (Na ¼ 8 particles at
L ¼ L3 þ Na þ 4 ¼ 96), and at (b) ν ¼ 1=5 (Na ¼ 6 particles
at L ¼ L5 þ Na þ 4 ¼ 85). The 12 lowest states (on the left to
the red-dotted line) are states of zero interaction energy. On
average, the impurity takes fractionally quantized values Lb ¼
½ðmþ νÞ=ð1 − νÞ� (indicated through the blue-dashed lines).
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2 corresponds to integer quantization of angular momen-
tum, whereas at ν ¼ 1=3 and ν ¼ 1=5, the slopes are
increased by factors 3=2 and 5=4, in full accordance with
the expected “quantization” of angular momentum.
Generalization to Moore-Read liquid.—The fractionali-

zation of impurity angular momentum, as described by
Eq. (3), does not only apply to impurities in a Laughlin
liquid, but it is also in the non-Abelian Moore-Read liquid
incorporating the pairing of particles. Such liquid allows for
two types of quasiholes [32]: a “Laughlin”-like quasihole
of charge νe, which is anticorrelated with all liquid
particles, and a “Pfaffian”-like quasihole, of charge
νe=2, which is anticorrelated only with one particle of
each pair. By Monte Carlo integration of their wave
functions (see also the Supplemental Material [33]), we
verify that Eq. (3) holds for an impurity bound to a
“Laughlin”-type quasihole in the Moore-Read liquid. In
contrast, for an impurity bound to a “Pfaffian”-type quasi-
hole, the formula has to be modified by replacing ν with
ν=2, that is, Lm

b ¼ ½ð2mþ νÞ=ð2 − νÞ�. This modification

accounts for the fact that the “Pfaffian” quasihole only
“sees” half of the liquid particles.
Results for multiple impurities.—Having established the

angular momentum levels of a single impurity, Eq. (3), we
now ask how hL̂bi behaves in the presence of Nb
impurities. To obtain states of zero interaction energy,
the total angular momentum needs to accommodate the
anticorrelations of the majority liquid, the presence of Nb
quasiholes, and, for fermionic impurities, a Vandermonde
determinant

Q
i<jðwi − wjÞ. Thus, the zero-energy ground

state occurs at L ¼ Lq þ NbNa þ 1
2
NbðNb − 1Þ, and its

wave function reads:

ΨF;qhs ∼
�YNb

i<j

ðwi − wjÞ
��YNa

i¼1

YNb

j¼1

ðzi − wjÞ
�
Ψq: ð4Þ

Naïvely, one might expect that the total angular momentum
of the impurities is equal to the value obtained from filling
the single-particle levels, Lb;FermiðNb;νÞ¼

PNb−1
m¼0 ½ðmþνÞ=

ð1−νÞ� ¼ ½1=ðq−1Þ�½ðq=2ÞNbðNb−1ÞþNb�. However,
this expectation is not correct: Fig. 3 shows our numerical
results for hL̂bi as a function of the numberNb of fermionic
impurities, which interact with a bosonic or fermionic
liquid (Na ¼ 20) at different filling factors ν. For com-
parison, we also plot Lb;FermiðNb; νÞ as well as the angular
momentum expected for Bose condensation in the lowest
impurity level, Lb;BoseðNb; νÞ ¼ NbL0

b ¼ Nb½ν=ð1 − νÞ�.
The numerical value is intermediate, Lb;Bose < hL̂bi <
Lb;Fermi. More precisely, it matches extremely well with
the following interpolation formula:

0 1 2 3 4 5 6
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0.01

0 1 2 3 4
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0 2.01
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(b)

FIG. 2. (a) We plot the radial density ρm;q
b ðjwjÞ of an impurity,

which is excited to the mth level (m ¼ 0, 1, 4), and which is
immersed in a FQH liquid at ν ¼ 1=q (for q ¼ 3 and q ¼ 5). For
concreteness, we have assumed a liquid of Na ¼ 8 particles at
L ¼ L3 þ Na þ 4 ¼ 96 for ν ¼ 1=3, and a liquid of Na ¼ 6
particles at L ¼ L5 þ Na þ 4 ¼ 85 at ν ¼ 1=5, and different m
levels correspond to different edge modes. We also plot the
density ρmðjwjÞ ¼ jφmðwÞj2 of a single impurity in the absence of
a liquid (ν ¼ 0). (b) For different levels m, we plot the mean
square hr2im of the radial position of the impurity in the presence
of a liquid at ν ¼ 1=3, ν ¼ 1=5, and in the absence of the liquid.
The slope of the linear relation between m and hr2im character-
izes the quantization of angular momentum.

FIG. 3. The impurity angular momentum hL̂bi is plotted as a
function of impurity number Nb, for different filling factors ν of
the majority liquid in the Laughlin state. The numerical results are
obtained fromMonte Carlo sampling in the wave function Eq. (4)
for Na ¼ 20 majority particles. We also plot Lb;BoseðNb; νÞ and
Lb;FermiðNb; νÞ, the values expected if free bosons or fermions
would fill the effective single-particle levels for impurities bound
to quasiholes, as well as the anyonic interpolation between both
curves, Lb;AnyðNb; νÞ, defined in Eq. (5). The numerical data is
found to match very well the anyonic prediction.
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Lb;AnyðNb; νÞ ¼ ð1 − νÞLb;FermiðNb; νÞ þ νLb;BoseðNb; νÞ:
ð5Þ

This formula suggests that the statistical parameter α, which
interpolates from Bose statistics (α ¼ 0) to Fermi statistics
(α ¼ 1), is given by α ¼ 1 − ν. This is in agreement with
the effective Hamiltonian derived in Ref. [26] for impurities
coupled to fractional quasiholes (see also Refs. [36,37]),
and with the general expectation for a Laughlin quasihole
(α ¼ −ν) bound to a fermion (α ¼ 1). Importantly, we note
that similar results, as shown in Fig. 3 (with Na ¼ 20), can
already be obtained for extremely small Laughlin liquids
(Na < 10), enabling the detection of anyon statistics in
microscopic quantum simulators.
Summary and outlook.—We have shown that (i) the

effective single-particle states for impurities bound to
anyons can be characterized by their fractional angular
momentum, and (ii) the filling of these levels is governed
by fractional statistics. Our findings provide a way to detect
anyonic properties without braiding via the density of
impurity particles. This eases anyon detection, possibly
also compared to existing schemes based on local density
of state measurements [18,19], pair-correlation function of
two impurities [24], or liquid density [21]. A key difference
of our approach to other proposals involving impurities
[19,24] is the fact that it keeps all impurity particles fully
dynamical. This realizes a noninteracting gas of anyons,
and an anyonic distribution function governs the impurity
degrees of freedom. With this, the setup is also suited to
study, in future work, the intricate thermodynamics of
anyon gases.
The implementation of our ideas is possible either in

microscopic quantum simulators using atoms or photons
[10,12], or in macroscopic electronic samples with
optically created impurities such as excitons or trions.
Signatures of excitons bound to fractional quasi-
particles have been reported in [38], and the exciton density
can be detected via scanning-transmission-electron micros-
copy [39]. Additional information covering long-range
Hamiltonians is presented in the Supplemental Material
[33]. Future work shall explore the potential of our scheme
for detecting non-Abelian anyons, and for studying thermo-
dynamics of anyons, including interacting anyons which
might themselves form FQH liquids.
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