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Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The
dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in
terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter,
we reconsider the critical end point of the metal-insulator transition on the DMFT’s two-particle level. We
show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge
channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition.
In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative
stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase
transitions in correlated materials.
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The interplay of interactions, correlations, and quantum
statistics in quantum many-body physics is responsible for
the appearance of complicated new phases, with the
Mott transition [1] as a prominent example. The simplest
theoretical realization of this correlation-driven metal-
insulator transition (MIT) occurs in the (single-band)
Hubbard model [2–5]. Quantum simulators using ultracold
fermions in optical lattices are providing unprecedented
experimental insight into this transition [6–10].
From the theory side, the dynamical mean-field

theory [11,12] (DMFT) provides a rare example of an
exact solution to a strongly correlated problem, namely, to
the Hubbard model in the limit of infinite dimensions.
During the first decade after the DMFT’s invention, the
essence [13] of the Mott transition was ascertained [16–23]:
At the zero temperature transition to the insulating phase,
the quasiparticle weight vanishes and the self-energy is
divergent at small frequency, in contrast to the Fermi
liquid. The U-T (interaction-temperature) DMFT phase
diagram of the particle-hole symmetric model can be
summarized as follows (sketched in Fig. 1; for an overview
see Refs. [23–26]): at low temperature, there is a metallic
phase at small U < Uc1 and an insulating phase at large
U > Uc2. In between, for Uc1 < U < Uc2, both metallic
and insulating solutions can be stabilized. This hysteresis
region (shaded blue area) ends at a critical temperature Tc,
where Uc1 ¼ Uc2 ¼ Uc (purple dot). No phase separation
occurs in the particle-hole symmetric system [24].
Although the single-particle properties (Green’s

function, self-energy, quasiparticle weight) are sufficient
to understand the essentials of the metal-insulator

transition, two-particle properties provide another rich layer
of information about the response to external fields, spatial
correlations, and optical properties. The simplifications of
infinite dimensions allowed early studies at the two-particle
level [19,20,27–30], but a systematic investigation of the
DMFT two-particle physics had to wait [31–38] for
computational improvement, especially the invention of
continuous-time quantum Monte Carlo solvers [39–41].

FIG. 1. Sketch of the phase diagram of the particle-hole
symmetric Hubbard model in DMFT. The first-order
metal-insulator transition occurs at UcðTÞ (blue curve), with a
second-order critical end point at ðUc; TcÞ (purple dot). The
shaded area is the hysteresis region, where both metal (m) and
insulator (i) can be stabilized. The colored curves illustrate the
free energy landscape at selected points (dots) in the phase
diagram, the vertical marks denote the local maxima of the free
energy, the triangles indicate the local minima, and the arrows
show the global minimum.
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There has recently been a flurry of activity on diver-
gences on the two-particle level [38,42–46], from simple
toy models [47,48] and the Hubbard atom [49] to cluster
approaches [50], relating these divergences to unphysical
solutions [43,45,51] and to the suppression of fluctuations
[52,53]. Crucially, divergences of the irreducible vertex
already appear in impurity models and therefore cannot
originate in the Mott transition: there is no Mott transition
in an impurity model with fixed bath—just as the Brillouin
function in Curie-Weiss mean-field theory of the Ising
model is smooth—and only the self-consistent adjustment
of the DMFT auxiliary impurity provides the opportunity
for a phase transition. Thus, on the two-particle level, we
also expect the Mott transition to appear via self-consistent
feedback, that is, outside the impurity model.
The divergences of the irreducible vertex imply that the

eigenvalues of the local charge vertex function and local
generalized susceptibility can change sign [38,45,53] and,
as a matter of fact, the same holds for the corresponding
lattice quantities. This undercuts the original idea of using
them for constructing the Landau functional near the Mott
transition [54,55] because the curvature of the free energy
is supposed to be positive definite for stationary
solutions. Indeed, Ref. [55] pointed out that the stationary
point of the self-energy functional is not necessarily an
extremum. Recently, it was shown [37] that the nonlocal
Bethe-Salpeter kernel, instead of the full one, is a more
appropriate quantity to describe the Mott transition, since it
yields positive eigenvalues that approach unity from
below. The corresponding symmetric Landau parameter is
indeed not affected by the divergences of the irreducible
vertex [37,38].
We show here that the nonlocal Bethe-Salpeter kernel,

associated with the charge sector, provides an intriguing
new view on the Mott transition across the hysteresis region
and especially at the critical end point. In particular, it
appears in the expression for the second derivative of an
appropriate Landau functional for the Mott transition,
yielding a positive curvature for stationary solutions,
whereas the functionals of Refs. [54,55] should be used
at weak coupling. Furthermore, this kernel is directly
related to the Jacobian of the DMFT fixed point function

]23,25,56 ], which determines the stability of iterative
solutions. The leading eigenvalue of the kernel is unity
at the finite temperature critical end point, signaling the
onset of the hysteresis region. Nevertheless, at particle-
hole symmetry the frequency structure of the corres-
ponding eigenvector ensures that the compressibility
does not diverge (cf. Ref. [57]). Therefore, the nonlocal
Bethe-Salpeter kernel determines two apparently separate
stability criteria, the thermodynamic and the iterative
stability, and the eigenvector frequency structure—
given by the difference between insulating and metallic
solution—distinguishes between diverging response and
exact cancellation.

We consider the Hubbard model describing the com-
petition between localization due to the Coulomb inter-
actionU and delocalization due to the dispersion tk. We use
i to label the sites on the periodic lattice and k to label the
corresponding momentum. The model is given by the
Hamiltonian

H ¼ −
X
k;σ

tkc
†
kσckσ þU

X
i

ni↑ni↓; ð1Þ

where c†kσ is the creation operator for a fermion with
momentum k and spin σ ¼ ↑;↓, and niσ ¼ c†iσciσ is the
number operator of electrons with spin σ on site i.
We consider this model in the grand-canonical ensemble
at temperature T and chemical potential μ. A central
object of interest is the (one-particle) Green’s function
Gk;ν;σ ¼ −hcσc†σik;ν in the Matsubara formalism, where
νn ¼ πTð2nþ 1Þ, with n ∈ Z as the fermionic Matsubara
frequencies. We consider the paramagnetic state and for
compactness drop the spin labels.
The DMFT [11,12] provides an approximate solution to

this model by setting Σk;ν ¼ ΣAIM
ν , where AIM stands for

an auxiliary impurity model consisting of a single inter-
acting site in a self-consistently determined bath. For the
present discussion, it is sufficient to state that the auxiliary
impurity model serves as a tool to evaluate the functional
relation Σ½Δ� between the bath hybridization function Δ
and the self-energy Σ of the AIM (in practice, we use the
ALPS [58] and iQIST [59,60] realizations of CTQMC [41]
solver of Ref. [61] with improved estimators [62]).
The hybridization Δ of the auxiliary impurity model is
chosen so that the mean-field self-consistency equation
gν½Δ� ¼ fðΔν; gν½Δ�Þ is satisfied. Here gν½Δ� ¼ 1=ðiνn −
Δν − ΣνÞ and

fðΔν; gνÞ ¼
X
k

Gk;ν ¼
X
k

1

g−1ν þ Δν þ tk
; ð2Þ

from now on
P

k ≡ð1=NÞPk∈BZ denotes the momentum
average over the Brillouin zone. The square brackets denote
functional relations.
In this Letter, we consider the two-dimensional square

lattice Hubbard model, tk ¼ 2tðcos kx þ cos kyÞ at half
filling. The energy scale is set by 4t ¼ 1. The half filled
model is particle-hole symmetric, which leads to Regν ¼ 0
and ReΣν ¼ U=2. In other words, only the imaginary parts
of both quantities are of interest, which simplifies the
analysis.
Fixed point equation.—The auxiliary impurity model is a

finite system that cannot undergo a (finite temperature)
phase transition by itself. Instead, as in Weiss’s mean-field
theory of magnetism, it is the self-consistency condition
that opens the possibility of a phase transition. Therefore,
our analysis of the critical point starts with the self-
consistency condition.
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DMFT looks for solutions of Eq. (2), i.e., a fixed point
Δ� ¼ h½Δ��, where h½Δ� ¼ iνn − Σν½Δ� − 1=fðΔν; gν½Δ�Þ.
To avoid issues related to the noninvertibility [43] of
the mapping Δ ↦ g, we perform the stability analysis
in terms of the iterative scheme Δðnþ1Þ ¼ h½ΔðnÞ�. An
important question is if these iterations converge to the
fixed point Δ� if one starts the iteration close to Δ�. In that
case, the fixed point is called attractive [63]. The textbook
analysis, based on a linear expansion of h around the fixed
point, shows that Δ� is attractive if and only if all
eigenvalues of the Jacobian J jΔ� ¼ ðδh=δΔÞjΔ� have
magnitude smaller than 1. Any eigenvalue larger than 1
implies that the self-consistency cycle is repulsive along the
direction given by the corresponding eigenvector. For
DMFT, the Jacobian can be evaluated explicitly in
Matsubara space as (see Supplemental Material [64])

Ĵ νν0 ¼ x̂−1D̂νν0 x̂; ð3Þ

Dνν0 ¼ T

�X
k

G2
k;ν − g2ν

�
Floc
ω¼0;νν0 ; ð4Þ

where Floc
ω;νν0 is the full local charge vertex, and x̂νν0 ¼

−Tδνν0gνgν is the local “bubble”. The hat denotes a matrix
in Matsubara space and, when possible, the matrix indices ν
and ν0 are dropped. The essential element of Eq. (3) is the
nonlocal Bethe-Salpeter kernel D at q ¼ 0 and ω ¼ 0, a
quantity that also appears in the calculation of linear
response functions based on a decomposition into local
and nonlocal fluctuations.
Response functions.—Indeed, the DMFT recipe provided

above not only allows us to determine the one-particle
Green’s function G for a given set of parameters ðU; μ; TÞ,
but on top of this, DMFT also describes how the system
would (linearly) respond [12] to an external field with
frequency ω and momentum q. We restrict our analysis to
time-independent fields, ω ¼ 0. The response function
χq¼0 can be obtained from

χ̂DMFT
q¼0 ¼ ð1̂ − x̂ F̂Þ 1̂

1̂ − D̂
X̂q¼0; ð5Þ

where ðX̂qÞνν0 ¼ −Tδνν0
P

k Gk;νGkþq;ν is the full
bubble, and the fraction denotes matrix inversion in
Matsubara space. The relation (5), which is derived in the
Supplemental Material [64], is a resummation [31,65–67]
of the more familiar expression [12] χ̂ ¼ ð1þ X̂ Γ̂Þ−1X̂ that
avoids the divergences of the irreducible vertex Γ. From
this generalized susceptibility matrix, the physical response
function is obtained as a sum over both fermionic frequen-
cies. For example, the compressibility dn=dμ is obtained
from the generalized susceptibility at q ¼ 0 (and, as before,
ω ¼ 0),

dn
dμ

¼
X
νν0

ðχ̂DMFT
q¼0 Þ

νν0 : ð6Þ

The response in DMFT is thermodynamically consistent in
the sense that this Bethe-Salpeter determination of dn=dμ
gives the same result as changing μ explicitly and calculat-
ing the change in n [68].
Landau theory.—Following Landau, the free energy

functional is the essential ingredient for understanding
stable and unstable phases and hysteresis close to the
critical point. Characteristic free energy curves are sketched
in Fig. 1. The second derivative of the free energy
determines if the stationary point is a local minimum
(δ2F > 0, stable, denoted by triangles in Fig. 1) or a local
maximum (δ2F < 0, unstable, denoted by a vertical bar).
The critical point is where a stable point turns unstable; in
other words, δ2F ¼ 0 exactly at the critical point (purple
curve in Fig. 1).
The Mott transition on the Bethe lattice has been studied

using Landau theory [23,69,70]. Here we generalize this
approach to arbitrary dispersion tk. With the hybridization
Δ as the order parameter, we write the Landau functional Ω
as Ω½Δ� ¼ Ωimp½Δ� − Ω0½Δ� (see Supplemental Material for
more details [64]), where Ωimp is the thermodynamic
potential of the auxiliary impurity model. Ω0 provides
the nonlocal feedback and ensures that the first derivative
δΩ=δΔ ¼ 0 at the self-consistent DMFT solution, that is,

δΩ
δΔν

¼ Tðgν½Δ� − gscν ½Δ�Þ; ð7Þ

where gν½Δ� ¼ δΩimp½Δ�=δΔν, is the local Green’s function
determined from the AIM for a given hybridization Δ, and
gsc½Δ� ¼ δΩ0=δΔ is the solution of the self-consistency
condition gscν ¼ fðΔν; gscν ½Δ�Þ for a given Δ, see Eq. (2). We
note that the map Δ ↦ gsc can be multivalued. However, as
we argue in the Supplemental Material [64], at sufficiently
strong coupling (e.g., near the MIT), only one branch is
relevant.
To determine the stability of this solution, we proceed

with the second derivative (Hessian), which reads (see
Supplemental Material [64])

δ2Ω
δΔνδΔν0

¼ −
1̂

1̂ − x̂−1X̂
ð1̂ − D̂Þx̂: ð8Þ

This is a matrix equation in Matsubara space, and
δ2Ω=δðiΔÞ2 is the Hessian matrix, which is a real
matrix in the case of particle-hole symmetry. The factor
ð1̂ − x̂−1X̂Þ−1 is diagonal in frequency, and, as we discuss
in the Supplemental Material [64], in the entire region of
interest it has only positive elements; therefore, the stability
is determined by eigenvalues of 1̂ − D̂. At the critical point,
the Hessian changes from stable to unstable; i.e., one
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eigenvalue of δ2Ω=δΔ2 is equal to zero, which requires an
eigenvalue of unity for D̂.
The same nonlocal Bethe-Salpeter kernel D̂ has

appeared three times in stability criteria: in the Jacobian
of the fixed point equation, in the compressibility, and in
the second derivative of the self-energy functional. The
latter two relate to the stability of the physical solution,
whereas the Jacobian determines the attractiveness of the
fixed point in an iterative scheme. For DMFT, these two
aspects are tied together by a single kernel.
This allows us to create a unified picture of the hysteresis

region of the particle-hole symmetric metal-insulator
transition. At the critical end point ðUc; TcÞ, the purple
dot in Fig. 1, the two stable (triangles in Fig. 1) and the one
unstable (vertical marks in Fig. 1) stationary points merge
together. Therefore, the quadratic part of the free energy
functional vanishes at this point (purple curve), which
together with Eq. (8) means that the Bethe-Salpeter kernel
D has an eigenvector V with eigenvalue λ → 1 (Fig. 2)
exactly at the critical end point. Since D̂ is related to the
Jacobian of the fixed point equation, the stable and unstable
solutions correspond to attractive and repulsive fixed
points, respectively [25].
Figure 3 shows the leading right eigenvector V of D̂

close to the critical end point. The physical meaning of this
eigenvector is that it relates the three fixed points that
exist at T < Tc, as ΔmðνÞ − ΔuðνÞ ∝ ðTc − TÞβVðνÞ and
ΔiðνÞ − ΔuðνÞ ∝ ðTc − TÞβVðνÞ, whereΔm,Δi, andΔu are
the hybridization functions at the metallic, insulating, and
unstable fixed points, respectively, and β is a critical
exponent. This together with particle-hole symmetry
[ΔðνÞ ¼ −Δð−νÞ] implies VðνÞ ¼ −Vð−νÞ, i.e., the eigen-
vector V is antisymmetric [53]. As the difference between
solutions, V provides the “order parameter”—similar to the
δΔL at T ¼ 0 of Kotliar et al. [69]—in the sense of
Landau’s functional: At the critical point, the free energy
landscape goes from a parabola to a double well potential
along the direction given by V. Figure 4 shows that the

second derivative of the grand potential—along the direc-
tion given by the right eigenvector WR of the Jacobian—
indeed goes to zero as one gets close to the Mott critical end
point. Note that the figure is at T > Tc, so the second
derivative does not quite reach zero.
Since VðνÞ ∼ δν;ν0 − δν;−ν0 at the critical point

(cf. Fig. 3), the three solutions ΔðνÞ differ only at low
frequency, i.e., close to the Fermi level. This is in agree-
ment with what is known qualitatively from investigations
of the density of states: the difference between the insulator
and the metal is that the latter has a quasiparticle peak at the
Fermi level. Astretsov et al. [71] used a single Matsubara
frequency approximation to study the cuprates; our result
here is a direct quantitative proof that this kind of
approximation is justified at the critical end point of the
Mott transition.

FIG. 2. The leading eigenvalue (note the logarithmic scale) of
D̂ approaches unity close to the critical point, 2.3 < Uc < 2.35
and 0.02 < Tc < 0.025 (gray region).

FIG. 4. Left: the compressibility does not diverge as the Mott
transition is approached. Right: the second derivative of the
Landau functional Ω determines the thermodynamic stability.
Approaching the Mott critical point, the vanishing of this second
derivative (in the direction given by WR) signals the onset of the
phase transition. Here, WR;L ¼ g�2

ν , where V is the leading right
eigenvector of the nonlocal Bethe-Salpeter kernel (cf. Fig. 3), and
T ¼ 1=30 > Tc. The gray band indicates the vicinity of the Mott
transition, 2.3 < Uc < 2.35.

FIG. 3. The leading right eigenvector V of the nonlocal Bethe-
Salpeter kernel D̂, for T just above Tc. As U increases and the Mott
transition is approached, the eigenvector localizes around ν ¼ 0 and
λ → 1. The eigenvector is normalized to

P
ν jVðνÞj2 ¼ 1.
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At T < Tc and Uc1 < U < Uc2, the Bethe-Salpeter
equation is convergent (and the iterative scheme is attrac-
tive) at both the metallic and the insulating solutions λ < 1
and divergent (repulsive) at the unstable fixed point λ > 1.
Although both metallic and insulating solutions are attrac-
tive fixed points, only one of them is the global minimum
(c.f., green and orange curves in Fig. 1) of the free energy in
most of the hysteresis region. Only at UcðTÞ (the blue line
in Fig. 1) do both solutions have exactly the same free
energy, and this is where the phase transition occurs. AtUc1
(Uc2), the unstable and insulating (metallic) fixed point
merge, so that λ ¼ 1 at this fixed point, but the metallic
(insulating) solution, with λ < 1, is the global minimum of
the free energy.
Kotliar et al. [72] predicted a compressibility divergence

at the critical end point of the doping-driven Mott
transition, dn=dμ → ∞. On first sight, our present
eigenvalue analysis seems to imply the same, since the
Bethe-Salpeter equation (BSE) diverges. However, a diver-
gence in the BSE can be canceled by an exact orthogonality
[53,72], and that is indeed what happens at particle-hole
symmetry [57]. The eigenvector V ∝ Δm − Δi is anti-
symmetric in ν and therefore does not contribute to the
sum in Eq. (6) [52,53,57], so that dn=dμ, shown in Fig. 4, is
finite (and small [73]) at the critical end point. This is
consistent with the absence of phase separation at particle-
hole symmetry [24]. A nondivergent compressibility com-
bined with a divergence of the BSE is reminiscent of the
zero temperature case [37]; in other words, both critical end
points of the particle-hole symmetric Mott transition are
characterized by a divergent BSE without a divergence
in dn=dμ.
The situation away from particle-hole symmetry is more

complicated because of the complex valuedness of
Green’s functions [57]. The antiferromagnetic transition in
DMFT [16]—which occurs when the assumption of para-
magnetism is lifted—can also be analyzed along the lines
of the current Letter as a divergence of the BSE in the
magnetic channel. An important open question is the
generalization of our analysis to the instabilities found in
multiorbital Hund’s physics [74–81] and, more generally,
to systems that show phase separation [24,72,82–90].
In conclusion, we identified the nonlocal Bethe-Salpeter

kernel with the Jacobian of the DMFT fixed point equation
and with the curvature of the free energy functional. Near
the critical end point of the finite temperature correlation-
driven Mott transition, the BSE diverges. The eigenvector
corresponding to the divergence relates the insulating and
metallic solutions that exist below the critical temperature.
Particle-hole symmetry then implies that this eigenvector is
antisymmetric and does not contribute to the compress-
ibility [57], which remains finite.
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