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We study a two-dimensional low-dissipation nonautonomous dynamical system, with a control
parameter that is swept linearly in time across a transcritical bifurcation. We investigate the relaxation
time of a perturbation applied to a variable of the system and we show that critical slowing down may occur
at a parameter value well above the bifurcation point. We test experimentally the occurrence of critical
slowing down by applying a perturbation to the accessible control parameter and we find that this
perturbation leaves the system behavior unaltered, thus providing no useful information on the occurrence
of critical slowing down. The theoretical analysis reveals the reasons why these tests fail in predicting an
incoming bifurcation.
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There has always been a special interest in trying to
predict transitions, crisis, and catastrophic events. Today, a
huge amount of research is devoted to determine good
indicators applicable on time series obtained from real
systems that may anticipate a change in its behavior or, in
the language of dynamical systems, a bifurcation [1–3].
This is particularly relevant in disciplines like medicine,
biology, atmospheric science, ecology, sociology, and
economy, where these predictions may avoid a disaster
or, at least, they may be useful to prepare the system to a
behavioral change. For example, it has been conjectured
that the advent of an epilepsy attack is the result of a phase
transition [4,5], that climate on Earth is actually very close
to a tipping point [6], that extremely intense pulses in lasers
may result from a bifurcation of a chaotic attractor [7,8],
and that evolutive specialization in ecology [9,10] is also
the consequence of a bifurcation. We may say that any
behavioral change in a real system is connected to the
existence of a bifurcation in the corresponding dynamical
system and that the prediction of these changes depends on
the possibility of establishing reliable indicators alerting of
the incoming bifurcation.
A well-established indicator that follows from the def-

inition of bifurcation is known as “critical slowing down”
(CSD). When the system approaches a bifurcation, its
relaxation time after a perturbation grows asymptotically
and this divergence is referred to as CSD [11]. CSD is often
associated with an increase of the variance and of the
autocorrelation of a system variable [12]. Nevertheless, it
has been observed that these indicators are not always
reliable for alerting on an incoming bifurcation [13,14].

On the other hand, real systems evolve toward a
bifurcation because one or more parameters are changing
in time. For example, the level of CO2 in the atmosphere is
an evolving parameter that may lead the Earth’s climate
system to a bifurcation [15].
In this Letter, we address the fundamental question

whether CSD is always a good indicator of an incoming
bifurcation in a system where a parameter is linearly
changing in time. By definition, CSD can be identified
by perturbing the dynamical system. Unfortunately, in real
systems, this perturbation cannot be implemented in the
variables but rather in the parameters that are accessible in
the experiments. Hence, a second question that we address
here is whether a perturbation of an evolving control
parameter can be a reliable probe for testing the occurrence
of a bifurcation. We answer to these questions by present-
ing a real nonautonomous system, with a control parameter
that is swept linearly in time, where CSD appears only after
the bifurcation has already occurred, hence when it might
be too late to reverse the change in behavior. Furthermore,
we show that a perturbation in the accessible control
parameter is unable to provide any indication on the
occurrence of CSD or the bifurcation crossing.
We begin by considering a simple two-dimensional

dynamical system describing a class-B laser [8],

dS=dt ¼ −Sð1 − NÞ;
dN=dt ¼ −γðN − Aþ SNÞ: ð1Þ

Here S is proportional to the light intensity and N to the
atomic population inversion; A is proportional to the pump
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and γ is the ratio between the decay rates of the population
inversion (γp) and the intensity (γi). The time t is normal-
ized to γi. This dynamical system exhibits a transcritical
bifurcation at A ¼ 1. For A < 1, the solution ðS;NÞ ¼
ð0; AÞ is stable. For A > 1, the solution ðS;NÞ ¼ ðA − 1; 1Þ
is stable. We vary the pump parameter A with a triangular
ramp of speed b, always smaller than the decay rate of the
variables of the system,

AðtÞ ¼ A0 þ bt for t ≤ t0;

AðtÞ ¼ A0 þ bt0 − bðt − t0Þ for t0 ≤ t ≤ 2t0; ð2Þ

where A0 is the initial value of the pump and t0 is the
duration of the ramp-up and ramp-down.
The evolution of the laser intensity S as a function of the

pump parameter A is plotted in Fig. 1. S grows significantly
at a value well beyond the bifurcation point A ¼ 1. This
delayed reaction of a laser when the pump is swept across
the threshold was studied theoretically [16] and experi-
mentally [17,18]. Critical slowing down was put in evi-
dence in [18] by measuring the asymptotical growth of this
delay as a function of the speed of the pump change. For a
vanishing speed, this delay diverges, thus revealing the
presence of CSD at the laser threshold. As shown in Fig. 1,
the intensity remains close to zero on a large interval during
which the pump continues to grow beyond the threshold
value. Hence, the system accumulates energy, which is
suddenly released, leading to a spikelike variation of the
intensity. If the system is underdamped (γ < 1), as in the
situation considered in Fig. 1, relaxation oscillations occur
until an asymptotic solution is reached, where the intensity

follows the pump. This behavior is typical of class-B lasers
[19–21], such as semiconductor or solid-state lasers.
Here, we test numerically the occurrence of CSD in this

system through a small perturbation ΔS in the laser
intensity at different values of the pump parameter A.
We measure the time taken by the perturbation to decrease
to 1=e of its initial value. Our results are plotted in Fig. 2.
We notice that, for slow ramps, the relaxation time diverges
at the bifurcation point, i.e., when we approach A ¼ 1, as
demonstrated in [18]. However, for larger values of b, CSD
does not take place at A ¼ 1 but at a higher value of the
pump parameter, which increases with b.
In order to explain these observations, we note that,

when S ≈ 0 (i.e., before the laser turns on), the evolution of
a perturbation ϵ of the intensity is governed by

dϵ
dt

¼ ϵðN − 1Þ: ð3Þ

The relaxation time diverges when dϵ=dt ¼ 0, so when
N becomes equal to 1. Importantly, the amplitude of the
perturbation has no effect whatsoever during this stage
(S ≈ 0). Because the pump parameter grows linearly in time
[as indicated in Eq. (2) for t ≤ t0], the equation governing
the evolution of N is

dN
dt

¼ −γðN − A0 − btÞ; ð4Þ

whose solution is NðtÞ ¼ A0 þ bt − bð1 − e−tγÞ=γ [22].
Then, by imposing N ¼ 1, we can calculate analytically

FIG. 1. Intensity S and population inversion N as a function of
the pump A. The pump is swept at a velocity b ¼ 0.0005;
γ ¼ 0.01. The initial conditions are S0 ¼ 0.001, N0 ¼ 0.8,
A0 ¼ 0.8. The arrows indicate how S and N evolve as the pump
is increased and then decreased. The vertical arrow shows that
N ¼ 1 is reached when A ¼ 1.05.

FIG. 2. Relaxation time T of the laser intensity S after this
variable was perturbed by a short pulse as a function of the pump
value A. Three values of the sweep velocity b are considered,
while γ ¼ 2.7 × 10−5 is kept constant. The occurrence of CSD is
marked by the asymptotic growth of T. For increasing b, CSD
takes place at values of A larger than the bifurcation point (A ¼ 1,
indicated with a dashed line).
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the critical pump value (Ac) at which the relaxation time
diverges and CSD takes place,

Ac ¼ 1þ b
γ
þ b

γ
W½−e−γ

bð1−A0Þ−1�; ð5Þ

with W being the Lambert w function. Hence, for the
parameters used in Figs. 1 and 2, Ac depends mainly on the
ratio b=γ. As this ratio increases, Ac grows above the value
at which the bifurcation takes place (A ¼ 1). The effect of
A0 on Ac is negligible provided that A0 < 1 − b=γ. In
agreement with this analytical estimation, in the simula-
tions, using the parameters of Fig. 2, one finds Ac ¼ 1.004,
1.18, and 1.37 for b ¼ 1 × 10−7, 5 × 10−6, and 1 × 10−5,
respectively, while in Fig. 1, N ¼ 1 is reached when
A ¼ 1.05, indicated by the vertical arrow.
Therefore, we have identified a system with a time-swept

parameter in which CSD takes place well beyond the
bifurcation point, contradicting the common belief that
CSD is an indicator of an upcoming bifurcation. Two
ingredients are needed for the dynamical system to behave
in this counterintuitive manner: a fast sweeping rate of the
parameter and low dissipation. The system considered is a
class-B laser, where γ (the ratio between the decay rates of
the population inversion γp and the intensity γi) is signifi-
cantly smaller than 1.
To meet this requirement, we perform experiments with a

diode-pumped solid-state laser (SSL) Nd:YVO4 emitting at
1.060 μm. In this laser, γp is on the order of 2 × 104 s−1
[23], while γi is 5 × 109 s−1 (see Supplemental Material
[24]), leading to γ ≈ 4 × 10−6.
SSL threshold is observed for a bias current J of the

diode pump J ¼ Jth ¼ 147 mA. The diode pump laser can
be modulated by a triangular ramp applied to its bias
current, hence sweeping linearly the pump intensity from a
zero level (J ¼ 88 mA, which corresponds to the diode
pump threshold) up to 1.4 times the threshold value of the
SSL (J ¼ 1.4 × Jth ¼ 208 mA). The laser package is
thermally stabilized in a temperature range where the
SSL emits on the same single longitudinal mode in the
whole swept pump range. The input and output signals
(the bias current of the diode pump and the intensity of the
SSL, respectively) are monitored on a digital oscilloscope.
The ramp duration can be varied from 0.05 s to 0.25 ms.
The speed of the fastest ramp, as defined in Eq. (2), is
b ¼ 1.12 × 10−6, hence b=γ ¼ 0.28 (see Supplemental
Material [24]). According to Eq. (5), this upper value of
b=γ, together with the possibility of controlling experi-
mentally b, makes this laser an ideal system to test the
prediction of this equation. Unfortunately, as in the major-
ity of real systems, it is not possible to perturb directly the
laser variables (S, N) to probe the occurrence of CSD.
However, real systems can be perturbed through their
control parameters and we may check their influence on
the variables.

The SSL intensity output versus the time-varying pump
level is shown in the upper panel of Fig. 3 for a modulation
rate of 100 Hz. We notice, in agreement with Fig. 1, that the
laser intensity grows significantly only when the pump
current is well above the threshold (the intensity spike
occurs at J ¼ Jon ¼ 175.5 mA, which corresponds to
1.2Jth). The first lasing peak is followed by damped
relaxation oscillations whose frequency increases as the
pump increases. The delayed response of the SSL in terms
of the pump level has been investigated for different speed
of the bias current ramp b and we have observed that it
follows the b−1 law predicted in [16]. This delay is almost
absent when ramping down the pump current and the laser
switches off at J ≈ Jth. The difference between the pump
value at which the laser starts to emit (J ¼ JonÞ and the
pump value at which it switches off (J ≈ Jth) leads to the
well-known dynamical hysteresis of Fig. 3, which has also
been observed in [18].
For the low modulation rate used in Fig. 3, we estimate

b ¼ 5.6 × 10−8 and b=γ ¼ 0.014 (see Supplemental
Material [24]). Hence, according to Eq. (5), CSD is
expected to occur very close to the SSL threshold
ðJ ¼ JthÞ. We test the occurrence of CSD by adding to
the bias current of the diode pump a perturbation pulse that

a
b
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d

e

f

g

h

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Upper: laser output intensity as a function of the bias
current of the diode pump that is swept in time by using a
triangular ramp (see text for details). The intensity trace obtained
during the positive (negative) slope of the ramp is displayed in
blue (orange). (a)–(h) A short pulse (1 μs width and 40 mA
height) is superimposed over the pump ramp at the positions
indicated by the arrows on the upper panel. The effect of each
perturbation on the laser intensity is shown in the corresponding
panels.
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is synchronous with the current ramp. By varying the phase
of the two signals, we can place the perturbation at arbitrary
positions of the ramp and analyze the response in the
intensity variable. We apply a pulse of 40 mA with a
duration of 0.5 μs at full width at half maximum. We
superimpose it to the pump ramp and, in Fig. 3, we show
the most relevant positions, marked by the arrows in the
upper panel.
The evolution of the perturbation depends clearly on its

position on the ramp, as shown by the Figs. 3(a)–3(h).
When the pump current is ramped up and the pulse is
applied before the laser emits the first spike and switches
on [Fig. 3(a)], the intensity is not affected and it remains
at the level of the experimental noise. This is observed
for any position of the perturbation in the interval
0 < J < Jon ¼ 1.2Jth. If the perturbation is applied after
the laser has switched on, the pulse may enhance the next
relaxation oscillation peak [Fig. 3(b)]. Instead, when it is
applied between two relaxation oscillation peaks, it will
decrease the amplitude of the next relaxation oscillation.
In any case, the perturbation pulse induces a new transient
in the relaxation process started after the laser switches
on. This can be seen in Fig. 3(c) and 3(d), where the
perturbation is applied when the laser oscillations are
significantly damped. One can notice that the relaxation
is faster when the perturbation is applied closer to the top of
the ramp, i.e., at the maximum value of the pump current.
When the pump current is ramped down, the evolution of
the perturbation is not interacting with another relaxation
process and, therefore, it is more clearly visualized: during
the ramp-down, the perturbation induces damped relaxation
oscillations. As the perturbation is applied closer to the
bifurcation point where the laser switches off, the damping
time increases, while the relaxation oscillations frequency
decreases [Figs. 3(e)–3(g)]. Finally, after the laser switches
off, the perturbation does not induce any reaction on the
intensity variable [Fig. 3(h)].
These experimental evidences indicate that no signature

of CSD, nor of the bifurcation crossing at J ¼ Jth, can be
found by perturbing the pump parameter when the system
evolves from the off state to the on state. This surprising
behavior is observed for any speed of the ramp, even for the
highest ones, where CSD is expected to occur well beyond
the threshold value of the SSL. When b is increased, the
laser switches on at an increasing pump level (for example,
with a ramp duration of 0.5 ms, Jon ¼ 1.3 × Jth) according
to the law predicted in [16], and no effect on the intensity
output is noticed when the pump perturbation is applied in
the interval 0 < J < Jon. Instead, the perturbation pulse
does have an effect on the intensity output when the laser is
in the on state. In this case, intensity exhibits a spike
followed by damped relaxation oscillations whose fre-
quency and damping rate decrease as the perturbation is
applied closer to the bifurcation point (J ¼ JthÞ.
In order to understand why perturbing the control

parameter is not a reliable method to probe the occurrence

of CSD in our laser, we have used Eqs. (1) and (2) to
analyze numerically the effect of a short pulse in the pump
parameter, i.e., AðtÞ ¼ ArampðtÞ þ ApðtÞ, where ArampðtÞ is
the triangular signal described by Eq. (2) and ApðtÞ is a
short rectangular pulse. The results obtained, displayed in
Fig. 4, are in very good agreement with the experimental
findings. We remark that, for the parameters used in Fig. 4,
b=γ ¼ 0.05, and therefore, according to Eq. (5), CSD
occurs at A ∼ 1.05. Nevertheless, as in the experiments,
no response to the pulse is observed in the laser intensity, as
long as the laser is off. Simulations including noise show
similar results (see Supplemental Material [24]).
The response of the system to a short perturbation in the

pump can be understood by analyzing the structure of the
equations. When the laser is off, the intensity S vanishes
and N must, in principle, follow the pump parameter A.
However, because N is a slow variable (γ ≪ 1), it is unable
to follow a sudden variation of A, as, for example, when A
is perturbed by a short pulse. Hence, the pump pulse does
not affect the value of the variable N, which will just
continue to follow the pump ramp and S will remain close
to zero, even if the perturbation pulse is applied when
A > Ac, i.e., when the pump parameter is beyond the
critical point where N ¼ 1 and CSD occurs. In fact, no
response in the S variable to the pump pulse can be
observed before the laser switches on. After the first laser
spike, S > 0 and this variable will respond directly to a
perturbation pulse in the pump, thus “bypassing” the low
pass filtering of the variable N. In this condition, the

FIG. 4. Top: intensity dynamics as a function of the pump. The
parameters are as in Fig. 1. The arrows and vertical lines indicate
the position at which we apply a short pulse to the pump (see text
for details). Middle (bottom): intensity dynamics when the pulse
is applied during the upward (downward) ramp.
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relaxation process following the pump perturbation is
observable in S, and an effect of the pump pulse on the
intensity output can be measured; however, this occurs only
after the laser has turned on.
In conclusion, we have shown that, in a low-dissipation

nonautonomous system with a control parameter that is
swept linearly in time, CSD is not always a reliable
indicator of an incoming bifurcation. By considering a
two-dimensional real system featuring a transcritical bifur-
cation, we have demonstrated that CSD may occur beyond
the bifurcation point, which makes it useless for alerting of
an incoming behavioral change of the system. Moreover,
we have shown that a perturbation of an evolving parameter
might not be able to identify CSD: this occurs when the
parameter affects directly a slow variable. In this case, a fast
perturbation pulse may leave this variable unchanged and
will have no effect on the system output. These results can
be generalized to low-dissipation nonautonomous systems
with dimension≥ 2 that have a transcritical bifurcation, and
we are currently studying their extension to other types of
bifurcations.
We believe that our results have an important impact in

environmental studies, in particular, in ecosystems’ dynam-
ics [25–27], because the evolution of populations is often
described by coupled nonlinear rate equations, such as
those considered here, and control parameters such as the
amount of water or food available can vary in time.
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