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Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing
that combines a high degree of control over electronic and vibrational degrees of freedom. The possibility
to individually excite ions to high-lying Rydberg levels provides a system where strong interactions
between pairs of excited ions can be engineered and tuned via external laser fields. We show that the
coupling between Rydberg pair interactions and collective motional modes gives rise to effective long-
range and multibody interactions consisting of two, three, and four-body terms. Their shape, strength, and
range can be controlled via the ion trap parameters and strongly depends on both the equilibrium
configuration and vibrational modes of the ion crystal. By focusing on an experimentally feasible quasi
one-dimensional setup of 88SrþRydberg ions, we demonstrate that multibody interactions are enhanced by
the emergence of soft modes associated with, e.g., a structural phase transition. This has a striking impact
on many-body electronic states and results—for example—in a three-body antiblockade effect that can be
employed as a sensitive probe to detect structural phase transitions in Rydberg ion chains. Our study unveils
the possibilities offered by trapped Rydberg ions for studying exotic phases of matter and quantum
dynamics driven by enhanced multibody interactions.
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Introduction.—The coupling between internal atomic
states and collective vibrational modes is the hallmark of
trapped ion setups. The possibility to engineer tunable
phonon-mediated two-body interactions, combined with
single-ion control and high fidelity state preparation, makes
them a powerful platform for quantum simulation and
information processing [1–14]. A further enhancement of
this setup can be achieved in trapped Rydberg ions, where
each ion can be individually excited to a high-lying
Rydberg level [15–23]. The strong dipole-dipole inter-
actions and the interplay between electronic and vibrational
degrees of freedom characterizing this system can be
exploited to simulate equilibrium and nonequilibrium
quantum many-body spin models [24–26], to devise non-
classical motional states [27], and for quantum information
processing beyond the scalability limitations of conven-
tional ion settings [28–30].
In this Letter, we demonstrate that the unique intertwin-

ing between intrinsically collective vibrational motion and
dipole-dipole interactions characterizing trapped Rydberg
ions provides a mechanism to engineer long-range and
multibody interactions in state-of-the-art setups. With
respect to their neutral counterparts, Rydberg ions offer
important experimental advantages. They can be conven-
iently trapped via state-independent electric potentials and

do not require magic trapping conditions [31–33], while the
control over both electronic and vibrational degrees of
freedom allows the manipulation of their state with an
unprecedented degree of fidelity. We investigate the emer-
gence of multibody interactions by focusing on a chain of
88Srþ Rydberg ions confined by harmonic potentials [see
Fig. 1(a)], which has been recently experimentally realized
[30]. We demonstrate that their strength is significantly
enhanced in the presence of soft vibrational modes. These
occur, e.g., at the linear-to-zigzag transition in a chain of a
few ions [34–40] and in long linear chains. Here, inter-
actions induced by spin-phonon coupling give rise to
nontrivial many-body phenomena, such as a three-body
antiblockade effect. The novel capabilities we unveil in our
work show that trapped Rydberg ions are a powerful
platform for quantum simulation, allowing for the study
of exotic kinetically constrained dynamics [41,42], long-
lived quantum information storage [43], and correlated
quantum states of matter [44–51].
Spin-phonon coupling induced multibody interactions.—

We consider a quasi one-dimensional chain of N two-level
Rydberg ions confined by a harmonic potential, as sketched
in Fig. 1(a). The two levels (with j↓i and j↑i denoting the
ground and Rydberg states, respectively) are coupled by a
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laser field with Rabi frequency Ω and detuning Δ. The
overall Hamiltonian is

H ¼ Hions þHL þHint; ð1Þ

with Hions ¼
P

l;λ ℏΩl;λða†l;λal;λ þ 1=2Þ describing the
vibrational dynamics of an ion crystal confined in a three-
dimensional harmonic potential vμðrn;μÞ ¼ Mω2

μr2n;μ=2.
Here, rn is the nth ion position, M its mass, and ωμ the
trapping frequency along direction μ ¼ fx; y; zg
[40,52,53]. Bosonic operators að†Þl;λ are associated with
the phonon mode ðl; λÞ with eigenfrequency Ωl;λ, where
λ labels the phonon branches [54]. We assume ωx;y ≪ ωz,
so that the motion of the ions is confined to the x − y plane.
In Eq. (1), HL ¼ P

N
n¼1 ½Ωσxn þ Δnn� describes the laser

excitation of ions to the Rydberg state. Here, nn ¼ ð1þ
σznÞ=2 and σμn are the Rydberg number operator and Pauli
matrices acting on the nth ion, respectively. The electro-
static dipole-dipole interaction between pairs of Rydberg
excited ions is modeled by Hint ¼

P0
m;n VRðrm; rnÞnmnn,

where VRðrm; rnÞ ¼ VRðjrm − rnjÞ and the prime denotes
m ≠ n. Under typical experimental conditions, the dis-
placements of ions from their equilibrium positions r0n are
much smaller than inter-ion distances. Hence, we expand
VRðrm; rnÞ to first order around r0n [33,54]. By substituting
the expansion into Eq. (1) and performing a polaron
transformation to approximately decouple electronic and
vibrational degrees of freedom [5,6,33,54], Eq. (1)
becomes

H0 ≃Hions þHspin þHres: ð2Þ

The spin Hamiltonian Hspin ¼ HL þH0
int þHeff

int contains,
in addition to the bare dipole-dipole interaction term
H0

int ¼
P0

m;n VRðr0m; r0nÞnmnn, also an effective Rydberg
interaction contribution

Heff
int ¼ −

X

m;n
0X

i;j
0Ṽmnijnmnnninj ð3Þ

generated as a consequence of the polaron transformation.
Heff

int consists of long-range and multibody interactions
coupling two, three, and four spins. Their strength is
encoded in the effective interaction (EI) coefficients

Ṽmnij ¼
2

M
GmnGij

X

μ;ν

Fμν
miR̄

0
mn;μR̄0

ij;ν; ð4Þ

where we defined∇rm;μ
VRðrm; r0nÞjr0m ≡GmnR̄0

mn, with coef-
ficients Gmn describing the magnitude of the gradient of the
Rydberg potential and factors R̄0

mn ¼ ðr0m − r0nÞ=jr0m − r0nj
encoding the geometry of the system. EIs explicitly depend
on the trapping regime via the coupling parameters
Fμν
mi ¼

P
l;λΩ−2

l;λM
μλ
mlM

νλ
il , where the normal mode matri-

ces Mμλ
ml relate local ion displacements to chain normal

modes [54]. Hence, the coefficients Ṽmnij can be controlled
by both the Rydberg interaction potential, through its
gradient coefficients Gmn, and the vibrational structure
of the chain. In Eq. (2), Hres contains a residual spin-
phonon interaction [5,6,54]. In the strong interaction
regime, which will be the focus of subsequent sections,
its contribution to the spin dynamics is negligible when
Ω ≪ Ω� ∼minðΩ−1=2

l;λ Þ [54]. In this case, the electronic and
vibrational degrees of freedom decouple.
Three-ion chain.—We first investigate the onset of EIs in

a three-ion setting, in which Heff
int reads

Heff
int ¼ −C2b

NNðn1n2 þ n2n3Þ − C2b
NNNn1n3 − C3bn1n2n3:

The coefficients C2b
NN and C2b

NNN parameterize two-body EIs
between nearest neighbors (NNs) and next-to-nearest
neighbors (NNNs), respectively, while C3b describes the
three-body contribution. Their behavior in the various
trapping regimes can be inferred from Eq. (4). A three-
ion chain features a second-order phase transition to a
zigzag configuration at the critical value α� ¼ ffiffiffiffiffiffiffiffiffiffi

12=5
p

of
the trap aspect ratio α ¼ ωy=ωx [40,54]. The transition is
signaled by the emergence of a soft mode with eigenfre-
quency Ω3;2 → 0 [see Fig. 1(b)], which, depending on the
configuration of the ions, may strongly affect the EIs. In the
linear regime (α > α�), the longitudinal and transverse
modes of the chain are not coupled and the normal mode
matricesMμλ

ml vanish when μ ≠ λ [54]. In this case, the soft

+ + +

(a) (b)

FIG. 1. Setup and phonon eigenfrequencies of a three-ion
crystal. (a) Ions are modeled as two-level systems whose ground
state j↓i is coupled to a Rydberg state j↑i by a laser with Rabi
frequency Ω and detuning Δ. The state j↑i spontaneously decays
to j↓i with rate γ. The equilibrium positions r0n are determined by
the interplay between Coulomb repulsion and harmonic confine-
ment. Ions m and n interact through the interaction potential
VRðrn; rmÞ when both are excited to Rydberg states. (b) Eigen-
frequencies Ωl;λ as a function of the trap aspect ratio α ¼ ωy=ωx

(l ¼ 1 blue solid, l ¼ 2 red dashed, l ¼ 3 green dash-dotted). For
α > α�, the upper plot (Ωl;1=ωx) corresponds to longitudinal
phonon modes, while the lower one (Ωl;2=ωx) displays the
transverse ones. The gray line highlights the structural phase
transition at α� ¼ ffiffiffiffiffiffiffiffiffiffi

12=5
p

. The configurations of a three-ion
chain are sketched on the top. The shaded blue areas represent the
trapping region in the x − y plane.
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mode is purely transverse and, since R̄mn;y ∝ r0m;y−
r0m;y ¼ 0, it does not contribute to Ṽmnij. This traces back
to the fact that transverse displacements hardly affect inter-
ion distances and only generate higher-order terms in the
expansion of VRðrm; rnÞ: In a linear chain only longitudinal
modes contribute to Ṽmnij via the coupling parameter Fxx

mi.
As show in Fig. 1(b), the latter are constant as a function of
α and only depend on ωx as Fxx

mi ∝ Ωl;1 ∼ ω−2
x . We note

that, for α > α�, ωx uniquely determines the distances
between ions, which scale as ω−2=3

x [54]. Since for dipole-
dipole interaction potentials larger distances result in
smaller gradients, in a three-ion chain it is not possible
to arbitrarily “soften” the longitudinal modes, and thus the
magnitude of the EIs that can be achieved is strongly
limited. In the zigzag configuration ðα < α�Þ, on the
contrary, all normal modes possess both longitudinal and
transverse components, i.e., Mμλ

ml ≠ 0, ∀ μ; λ [54]. The
collective and intertwined nature of phonon modes results
in nonvanishing coupling parameters Fμν

mi, ∀ μ; ν.
Moreover, R̄mn;y ≠ 0 and hence all the couplings Fμν

mi
contribute to Eq. (4). Crucially, due to the presence of
the soft mode (3,2), for α → ðα�Þ− one finds Fμν

mi ∼Ω−2
3;2,∀ μ; ν. We therefore expect an increase of the EI strength

close to the critical point.
Looking at Eq. (4), one notices that large Rydberg

potential gradients Gmn are essential to maximize the
effects of EIs. Unfortunately, in trapped Rydberg ions,
van der Waals interactions are generally weaker than their
neutral counterparts and do not give access to large
gradients. To overcome this issue, we exploit the interplay
between dipole-dipole interactions of microwave (MW)
dressed states [19,28] andMW-tuned Förster resonance in a
setup of 88Srþ trapped Rydberg ions [21,22,30]. This allows
us to obtain the ion-ion interaction potential shown in
Fig. 2(a) [54]. The corresponding EI coefficients are shown
in Fig. 2(b) as a function of the trap aspect ratio α. For

α > α� their values are fixed and small, as expected from
the discussion above. On the other hand, for α → ðα�Þ−, the
two-dimensional configuration of the chain, the mixing
between longitudinal and transversal modes, and the
emergence of a soft mode result in a significant enhance-
ment of the EI strength. The sign of interaction coefficients
is determined by the gradient of the Rydberg potential at
NNs and NNNs GNN and GNNN respectively. The potential
chosen in Fig. 2(a) gives GNN < 0 and GNNN > 0. Close to
the linear-to-zigzag transition, this results in C2b

NN; C
2b
NNN;

C3b > 0 [see Fig. 2(b)], corresponding to attractive EIs.
We now investigate an interaction induced three-body

Rydberg antiblockade regime, a generalization of the well-
studied facilitation mechanism in the presence of two-body
Rydberg interactions [56–60]. By denoting with VNN and
VNNN the bare Rydberg interactions between NNs and
NNNs contained in H0

int, respectively, this regime is
achieved when [see the level structure in Fig. 3(a)]

3Δþ 2ðVNN − C2b
NNÞ þ ðVNNN − C2b

NNNÞ − C3b ¼ 0: ð5Þ

If ions are prepared in state j↓↓↓i at time t ¼ 0, an
enhancement in the projector on state j↑↑↑i at subsequent
times P↑↑↑ðtÞ is expected for values of Δ satisfying Eq. (5).
The behavior of the time-integrated expectation value of

(a) (b)

FIG. 2. Effective multibody interaction in a three-ion chain.
(a) Two-ion MW dressed potential VRðdÞ as a function of the ion
separation d [54]. Dashed gray lines denote the distance between
NNs, dNN ¼ 3.1 μm, and NNNs, dNNN ¼ 2dNN, in a linear chain
with ωx ¼ 2π × 1.3 MHz. Here, VNN=h ¼ 0.25 MHz and
VNNN=h ¼ −0.6 MHz, with corresponding gradients GNN=h ¼
23.6 MHz=μm and GNNN=h ¼ 0.3 MHz=μm. (b) EI coefficients
associated with the potential in panel (a) as a function of the trap
aspect ratio α. The emergence of a soft mode at the linear-to-
zigzag transition leads to a significant enhancement of the EIs.

(a) (b)

(c) (d)

FIG. 3. Three-body spectroscopy. (a) Electronic levels of a
three-ion chain. Here, V 0

NN ¼ VNN − C2b
NN and V 0

NNN ¼
VNNN − C2b

NNN. Red (gray) lines correspond to energy levels in
the presence (absence) of EIs in the regime of Fig. 2(b). (b),
(c) Time-integrated expectation value of P↑↑↑ as a function of
trap aspect ratio α and detuning Δ=h for a system of N ¼ 3 ions
without (b) and with (c) EIs. The initial state is j↓↓↓i and
Ω=h ¼ 0.1 MHz. Other parameters are as in Fig. 2. Time
averages are evaluated over a 50 μs window, and we included
the finite Rydberg lifetime τ ¼ γ−1 ¼ 30 μs [see Fig. 1(a)]. In (c),
the red solid curve shows the transverse displacement r1;y ¼ r3;y
as a function of α [54], while the black dashed line highlights the
position of the maximum of hP↑↑↑i from panel (b). (d) Difference
between the time-averaged expectation values of P↑↑↑ with and
without EIs as a function ofGNN=h and Δ=h for α ¼ 1.548. Here,
GNNN ¼ 0.01GNNN. Other parameters are as in (b),(c).
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P↑↑↑ðtÞ, denoted by ¯hP↑↑↑i, is shown in Fig. 3(b),(c). Panel
(b) shows the case with bare Rydberg interactions only (i.e.,
with C2b

NN ¼ C2b
NNN ¼ C3b ¼ 0), while effects of EIs are

displayed in panel (c). For α → ðα�Þ−, EIs modify signifi-
cantly the value of Δ satisfying Eq. (5). This results in a
shift of the peak of hP↑↑↑i. As shown in Fig. 3(d),

displaying the difference δhP↑↑↑i between the time-
integrated expectation values of P↑↑↑ðtÞ with and without
the contributions of Heff

int , the presence of phonon-mediated
EIs leads to a clear spectroscopic signature.
The latter provides a sensitive tool to locate the critical

point of the linear-to-zigzag transition, allowing for a
significant improvement over state-of-the-art methods
[38,61,62]. Indeed, the typical resolution of current direct
camera images of the ions is ≈0.5 μm and, the transition
being a second-order one, they can hardly reveal the small
ion displacements along the traverse direction for α ≈ α�. In
contrast, from Fig. 3(c) we see that close to the critical point
a traverse displacement of ≈0.1 μm corresponds to a shift
of ≈0.2 MHz in the peak of hP↑↑↑i, which can be easily
detected via spectroscopic measurements [63].
Infinite linear chain.—In the previous section, we

showed that in a three-ion chain phonon-mediated EIs
are strongly amplified by the emergence of a soft mode. We
now inspect the behavior of Heff

int in longer chains, where
system properties explicitly depend on the number of ions,
N [36,37,64]. In particular, by increasing N, one can
decrease the inter-ion distance in the central region of
the chain even in the presence of a weak longitudinal
confinement. This can be exploited to engineer soft modes
even in the linear configuration and, hence, it allows one to
overcome the restrictions on the strength of EIs we
discussed for a linear three-ion chain. As we will show,
the increased flexibility provided by a denser vibrational
spectrum also provides a convenient handle to control the
range of the EIs.
To gain insights into the phenomenology of this case, we

consider the infinite chain limit N → ∞, which provides a
good description of the central region of long yet finite
chains [39,65]. In the linear regime [40], the equilibrium
positions of the ions are r0n ¼ ðnd; 0Þ, with d being the
fixed inter-ion distance and n ∈ f0;�1;…;�∞g. To
mimic the effect of a longitudinal confinement, we replace
the harmonic trapping potential along the x axis with a
periodic one commensurate with the lattice spacing,
vxðrn;xÞ ¼ −Mωxðd=2πÞ2 cosð2πr0n;x=dÞ. Expanding the
ions’ coordinates in Fourier modes and generalizing the
steps leading to Eq. (2), we obtain a Hamiltonian H0 with
the same form as Eq. (2) [54]. Similarly to the
three-ion case, in the linear configuration longi-
tudinal and transverse modes are not coupled (i.e.,
Fμν
mi ¼ 0 for μ ≠ ν) and R̄0

mn;y ¼ 0. Thus, only longitudinal

modes contribute to Ṽmnij via Fxx
mi ≡ FðsÞ ¼

ð2πÞ−1 R π
−π dk½ΩxðkÞ�−2e−iks, with s ¼ m − i, −π ≤ k < π

defining the wave vector of the first Brillouin zone and
ΩxðkÞ the eigenfrequency of phonon mode ðk; xÞ [54].
The dense vibrational spectrum leads to two different

regimes for the ion dynamics that can be controlled via the
trap parameter ηx ¼ V0=ðMd3ω2

xÞ [6] and that allows one to
substantially modify the behavior of FðsÞ [see Fig. 4(a)].
For ηx ≪ 1 (stiff limit), ions behave as independent
harmonic oscillators, while for ηx ≫ 1 (soft limit) phonon
modes describe genuinely collective excitations. In the stiff
limit, FðsÞ is peaked around s ¼ 0, implying that dominant
contributions to Heff

int consist of connected strings of
neighboring two-, three-, and four-body terms. On the
other hand, for ηx ≳ 1, FðsÞ has a broader distribution and
is nonnegligible also for jsj > 0. As a consequence, exotic
long-range and multibody interaction terms arise inHeff

int , as
shown in the bottom row of the inset in Fig. 4(a). This
broad spectrum of possible interaction patterns, allowed by
the collective nature of phonon modes and the precise
control over the chain trapping parameters, is in contrast
with the case of Rydberg atom tweezer arrays, where only
short-range two- and three-body interactions can be engi-
neered [33].
Three-body spectroscopy of a long chain.—The previous

discussion allows one to gain an understanding of the three-
body spectroscopy of a long yet finite chain, which can be
experimentally investigated in trapped Rydberg ion simu-
lators. Indeed, in a long enough chain, long wavelength soft
modes, which give the largest contribution toHeff

int , coincide
with good approximation with the ones of the correspond-
ing infinite chain limit [39,65]. Moreover, due to the finite
lifetime of Rydberg excitations τ ¼ γ−1, with γ the sponta-
neous decay rate [see Fig. 1(a)], the vibrational spectrum of
the chain can be considered as continuous when energy

(a) (b)

FIG. 4. Effective multibody interactions in an infinite linear
chain. (a) Coupling parameters ω2

xFðsÞ as a function of s ¼ m − i
for ηx ¼ 0.1 (stiff regime), ηx ¼ 1 (intermediate regime), ηx ¼ 10

(soft regime). Inset: Examples of possible contributions to Heff
int .

In the stiff limit, the 4b0 term is strongly suppressed with respect
to the 4b one. (b) Ratios between the EI coefficients in a linear
infinite chain and the corresponding ones for the three-ion case as
a function of the infinite chain trapping frequency, ðωxÞ∞ (units
2π ×MHz). Distance between NNs is fixed as d ¼ 3.1 μm
(corresponding to ωx ¼ 2π × 1.3 MHz for the three-ion chain).
Rydberg potential parameters are as in Fig. 2, while ηx > 1 and
N > 4 throughout the whole range of ðωxÞ∞ considered.
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gaps between phonon modes are smaller than γ. For 88Srþ
ions (with τ ≈ 30 μs) in a trap with ωx ¼ 2π × 0.2 MHz,
the above conditions are both met for chains with N ≳ 20,
which are within the reach of current state-of-the-art setups
[30]. The possibility to control inter-ion distances in the
central region of a long chain by tuning N allows one to
employ a weaker longitudinal confinement, which results
in the emergence of soft modes ΩxðkÞ ∼ ωx near k ≈ 0.
Thus, an enhancement of the EIs can be obtained even in
the linear configuration. To quantify this effect, in Fig. 4(b)
we plot the ratio between the EI coefficients for an infinite
chain and the corresponding ones for the three-ion setup
shown in Fig. 2(b). To make the comparison meaningful,
we fix the inter-ion distance in the infinite chain as
d ¼ dNN, with dNN as in Fig. 2. When the infinite chain
trapping frequency ðωxÞ∞ is varied, d can be kept fixed by
adjusting N. In principle, by adding more ions to the chain
while keeping ðωxÞ∞ constant, smaller values of d can be
accessed, leading to stronger EIs. Looking at Fig. 4(b), we
also note that in an infinite chain C2b

NNðNÞ and C3b have

opposite signs. This fact, due to the different vibrational
structure, allows one to investigate the competition between
attractive and repulsive EIs. We therefore expect that
trapped Rydberg ions will give access to different inter-
action regimes, paving the way to the study of quantum
magnetism and frustration phenomena in the presence of
exotic multibody effects.
Conclusions.—We investigated the emergence of long-

range multibody interactions in a chain of trapped Rydberg
ions induced by the coupling between phonon modes and
ion-ion Rydberg interactions. We showed that these inter-
actions are extremely sensitive to the chain equilibrium
configuration and vibrational regimes, such as the emer-
gence of soft modes. By employing realistic parameters
from a state-of-the-art setup of 88Srþ Rydberg ions, we
demonstrated that they result in a neat signature of the
linear-to-zigzag transition in the spectroscopic signal of the
ions' Rydberg state. The intertwining between chain con-
figuration, vibrational structure, and effective interactions
illustrated in this Letter provides a versatile mechanism to
investigate quantum dynamics in the presence of nontrivial
multibody interactions and exotic constraints.
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