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Geometric frustration of particle motion in a kagome lattice causes the single-particle band structure to
have a flat s-orbital band. We probe this band structure by placing a Bose-Einstein condensate into excited
Bloch states of an optical kagome lattice, and then measuring the group velocity through the atomic
momentum distribution. We find that interactions renormalize the band structure, greatly increasing the
dispersion of the third band, which is nearly non-dispersing the single-particle treatment. Calculations
based on the lattice Gross-Pitaevskii equation indicate that band structure renormalization is caused by the
distortion of the overall lattice potential away from the kagome geometry by interactions.

DOI: 10.1103/PhysRevLett.125.133001

Band structure describes the states of motion of non-
interacting particles within a spatially periodic potential, and
helps explain properties ofmaterials, the propagation of light
in photonic crystals, and the transport of ultracold atoms
within optical lattices. In some materials, interactions cause
band structure to differ strongly from the noninteracting case,
an effect known as band structure renormalization. Such
renormalization can be particularly important in heavy-
fermion materials, where the Fermi energy lies within a
band with very small dispersion (a flat band) [1].
Flat bands have also been realized in optical lattices.

Specifically, in the two-dimensional kagome [2] and Lieb
[3] lattices, geometric frustration of particle motion pro-
duces nondispersing bands. In the tight-binding limit, with
the tunneling energy between neighboring sites i and j
defined as −Jðâ†i âj þ â†j âiÞ, a flat band emerges as the
third and second bands of the J > 0 kagome and Lieb
lattices, respectively. Here, âi (â

†
i ) is the particle annihi-

lation (creation) operator at site i.
Systems of interacting bosons or fermions that equili-

brate within flat bands are the subject of intense interest [4–
12]. Specifically, for interacting bosons equilibrating in the
flat ground band of a J < 0 kagome lattice, You et al. [5]
propose that interactions renormalize the band structure,
causing a stable superfluid to form at the K or Γ points of
the Brilliouin zone, where, self-consistently, the band
energy is minimized.
Here, we probe the effects of interactions on the flat band

of anoptical kagome latticewith an atomicBosegas.ABose-
Einstein condensate of 87Rb atoms is prepared at rest,

accelerated, and then loaded adiabatically into an excited
Bloch state of the (J > 0) kagome lattice with variable
quasimomentum q and band index n. We characterize this
far-from-equilibrium state by measuring its momentum
distribution and group velocity vg.We find the group velocity
for atoms in the n ¼ 3 band of the kagome lattice to be
significantly larger than expected for noninteracting atoms.
Through experiments and numerical calculations, we con-
firm that the unflattening of the band results from interaction-
driven band structure renormalization. Our work verifies the
physical picture suggested by Ref. [5] that a flat band is
renormalized by mean-field interactions and becomes dis-
persive, and, more generally, demonstrates that the transport
of lattice-trapped atoms can be significantly influenced by
interactions. Recently, the distortion of the flat band of the
Lieb lattice by an interacting gas in a superposition of band
states has also been observed [13].
In the limit of vanishing potential depth, the band energy

EnðqÞ in any lattice approaches the energy of a free particle
with momentum p ¼ ℏk, and Bloch states ΨðnÞ

q ðrÞ map

onto plane waves ΨðnÞ
q ðrÞ ∼ expðik · rÞ, where k lies in the

nth Brillouin zone and k ¼ q modulo reciprocal lattice
vectors. This mapping provides a three-step protocol to
transport all atoms within a Bose-Einstein condensate into
any Bloch state of an optical lattice (Fig. 1). First, a
condensate is formed at k ¼ 0 in the absence of an optical
lattice. Second, the condensate is accelerated to a momen-
tum ℏk lying in the nth Brillouin zone. Third, the lattice
potential is ramped on, mapping the condensate adiabati-
cally into the q ¼ k Bloch state in the nth band [14,15].
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We prepare Bose-Einstein condensates of 0.4 − 22 × 104

87Rb atoms in an optical dipole trap with trap frequencies
ωx;y;z ¼ 2π × ð23; 41; 46Þ Hz. Avertically (z) oriented light
beam at 1064 nm wavelength, with its focus displaced from
the condensate in the x-y plane, is imposed for a variable time
on the order of 1ms. The dipole forceof this beamaccelerates
the condensate at 6 m=s2 in the y direction. The 1=e2 radius
of the beam (85 μm) is larger than theRTF ∼ 10 μmThomas-
Fermi radii of the condensate, reducing effects of the
imposed dipole potential curvature on the gas [16].
After the accelerating optical potential is switched off,

we gradually impose an optical kagome lattice in the
horizontal plane [2,17]. For this, we overlay two triangular
lattices, created with short- (SW, 532 nm) and also long-
wavelength (LW, 1064 nm) light with in-plane polarization.
The depths of the two sublattices are increased to their final
values in T ¼ 1.2 ms [18]. The potential along the z axis is
unmodified by the lattice beams and remains loosely
confining.

After allowing the gas to evolve within the lattice for
≤ 350 μs, we characterize its momentum distribution. We
suddenly switch off the optical lattice and dipole trap, allow
the atoms to expand into a loosely confining magnetic trap
for a quarter-cycle of harmonic oscillation, and then image
them. This technique maps a Bloch state into a reciprocal
lattice of sharply peaked atomic distributions.
Letting qK be the magnitude of the quasimomentum at

the first K point, accelerating atoms along y to a wave
vector k=qK in the ranges of (0,1), (1,1.5), and (1.5,2)
places the gas into the first, third, and fourth bands of the
lattice, respectively [Fig. 1(c)]. Since the condensate has
negligible widths in momentum space approximated by
ℏ=RTF ¼ 0.02ð0.01ÞℏqK in the yðxÞ direction, the entire
quantum gas can be loaded into a single band as long as one
avoids the edges of the Brillouin zone, where our adiabatic-
loading scheme fails.
Representative momentum distributions at four points

along this trajectory are shown in Fig. 2(b). Qualitatively,
these distributions match with those calculated for noninter-
acting atoms in our kagome lattice [Fig. 2(a)], indicating that,
indeed, our procedure places the entire population of the
condensate into excited Bloch states, including into the n ¼ 3
bandwhose (noninteracting) banddispersion is near zero [19].
However, a quantitative analysis reveals dramatic

differences from the noninteracting band model. We focus
on the group velocity vg ¼ ℏ−1∇qEnðqÞ. By the Hellmann-
Feynman theorem [20–22], which applies regardless of
interaction strength, the group velocity is related to the
mean velocity vg ¼ hℏk=mi of the Bloch state, with m
being the atomic mass.
Experimentally, we measure this mean velocity by

applying spatial fits to the imaged distribution in a region
surrounding each peak to determine the population NG of
atoms in the ℏðqþGÞ momentum states, where G are
reciprocal lattice vectors. We then take the weighted
average vg ¼ ðℏ=mÞ½PGðqþGÞNG�=ð

P
GNGÞ.

The observed group velocity disagrees profoundly with
the noninteracting band structure result. In particular,
whereas the noninteracting band theory predicts a near-
zero group velocity within the n ¼ 3 kagome-lattice band,
we observe a gas of atoms loaded into that band to have a
significantly higher group velocity.
To explain this disagreement, we consider effects of

interactions. Band structure applies to interacting systems
in various ways. One approach is to consider weak
excitations atop an interacting equilibrium system charac-
terized by lattice symmetry. The band excitation spectrum
of interacting lattice-trapped quantum gases has been
measured, e.g., by optical Bragg scattering [23–26].
Alternately, band structure may be used to describe the

far from equilibrium state of a gas residing entirely in an
excited Bloch state. For a condensed Bose gas, interactions
are treated at the mean-field level by finding the Bloch
states of the lattice Gross-Pitaevskii equation,

(a)

(c) (d)

(b)

FIG. 1. Experimental scheme. (a) Illustration of the scheme
with an example of one-dimensional system. The band structure
of a 1D lattice, with lattice wave number 2 × q0, at zero (left) and
nonzero (right) depth in the extended zone scheme. A particle
accelerated to the nth Brillouin zone (n − 1 < jkj=q0 < n) is
loaded adiabatically into the nth band as the lattice. (b) The
optical kagome lattice is constructed by overlaying triangular
lattices using short- (532 nm, green) and long-wavelength
(1064 nm, shown in red) light. Primitive lattice vectors a1;2
are shown. The four sites in a unit cell are labeled A–D. (c) The
first four Brillouin zones of the kagome lattice. Acceleration
along y maps atoms sequentially into the n ¼ 1 (light blue, Γ to
K), n ¼ 3 (green, K to M), and then n ¼ 4 (purple, M to K)
bands. The orange trajectory indicates the range of wave vector k
atoms are accelerated to in experiments reported in Fig. 2.
(d) Noninteracting band structure of the optical kagome lattice.
Solid black lines: (VSW, VLW)=h× (25, 15) kHz. Dashed gray
lines: zero lattice depth. The yellow trajectory matches that in (c).
Circled labels are referenced in Fig. 2(b). The recoil energy ER ¼
h × 2.0 kHz in the kagome lattice.
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�
−
ℏ2

2m
∇2 þ VðrÞ þ gjΨðrÞj2

�
ΨðrÞ ¼ EnðqÞΨðrÞ ð1Þ

where g ¼ 4πℏ2a=m with a being the s-wave scattering
length, and ΨðrÞ is the condensate wave function. Self-
consistent Bloch-state solutions are found where the
density jΨðrÞj2 is symmetric under translation by lattice
vectors. The state ΨðrÞ is then a Bloch state for a
noninteracting gas in an overall potential that is the sum
of the applied lattice potential VðrÞ and the spatially
periodic interaction energy gjΨðrÞj2. Such solutions have
been studied in the context of quantum gases, identifying
additional solutions beyond those in the noninteracting case
(swallowtails), related dynamical phenomena such as non-
linear Landau-Zener tunneling and hysteresis [27–36], and
modulational instability [37–39]. Nonlinear Bloch modes
also arise in nonlinear photonic crystals [40] and exciton-
polariton condensates [41].

The group velocity determined from Eq. (1) agrees with
our measurements [Fig. 2(c)] [42]. Both numerical and
experimental data show that the effect of interactions on the
group velocity is most pronounced in the n ¼ 3 band.
We characterize the interaction-induced distortion of the

kagome lattice flat band by two additional experiments. We
focus on the initial wave vector ky ¼ 1.25qK, within the
n ¼ 3 band. First, we measure vg for identically prepared
condensates that are loaded into lattices of increasing depth
[Fig. 3(a)]. For the noninteracting case, the calculated
group velocity tends quickly to zero as the lattice is
deepened and approaches the kagome-geometry, tight-
binding limit. In contrast, in the presence of interactions,
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FIG. 2. Measured group velocity in the kagome lattice.
Momentum distributions are shown [(a) noninteracting Bloch
theory; (b) measured] at four representative initial k [indicated by
dashed circles in (b)] with labels corresponding to those in
Fig. 1(d). Basis reciprocal lattice vectors g1;2 are shown.
(c) Measured vg ¼ vg · y. The initial wave vector k is measured
for each experimental repetition. Data with ky within a binning
range (blue shaded bars) are averaged, with 3–8 measurements
per bin. Error bars are standard mean errors. Data agree with
calculations that include effects of interactions at a peak density
of n0 ¼ 5.4ð5Þ × 1013 cm−3 (solid line, gray region indicates
effect of density uncertainty), and disagree with noninteracting
band-theory predictions (dashed line). Final lattice depths are
ðVSW; VLWÞ ¼ h × ð25; 15Þ kHz.
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FIG. 3. Dependence of vg on lattice depths and densities
measured at a fixed initial wave vector of ky ¼ 1.25qK . (a) vg
measured with a peak density n0 ¼ 6.2ð6Þ × 1013 cm−3 and
different lattice depths (VSW=VLW constant). While band theory
(dashed line) predicts that vg is suppressed quickly at increasing
lattice depths, data (each point is average of 4–7 measurements)
show a significantly smaller rate of suppression, in agreement
with Gross-Pitaevskii equation predictions (solid line; gray
region indicates effects of density uncertainty). (b) vg measured
at ðVSW; VLWÞ ¼ h × ð20; 10Þ kHz increases monotonically with
number density as predicted by the Gross-Pitaevskii equation
(black line). Data within a small binning range (blue shaded bars)
of densities, determined up to 10% systematic uncertainty, are
averaged, with 3–8 measurements per bin. Error bars are standard
mean errors. Insets are single-shot images taken at indicated
settings.
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while vg diminishes for increasing lattice depth, it does so
only slowly and lies significantly higher than the non-
interacting result.
Second, we study the dependence of vg on the interaction

strength by varying the density of the gas. We load
condensates with initial peak densities n0 in the range of
2 − 11 × 1013 cm−3 into the aforementioned Bloch state,
and find vg increases with gas density [Fig. 3(b)], showing
that the flat band of the kagome lattice acquires a dispersion
that increases with interaction energy.
The picture that emerges from our findings is that the

interaction among atoms within a Bloch state adds to and
distorts the lattice potential, thereby changing the transport
properties of the lattice. This distortion is evident in the
real-space atomic distribution predicted by the lattice
Gross-Pitaevskii equation. In Fig. 4, we consider again
the n ¼ 3, ky ¼ 1.25qK Bloch state, and calculate the
population fractions in the four sites of the lattice unit
cell, with A, B, and C being the three allowed sites in
the kagome lattice, and D being the site excluded from the
lattice as VLW is increased. In the deep lattice, the
population becomes concentrated largely in just two sites
of the kagome lattice (B and C). The unequal population of
atoms in the kagome lattice sites leads to a mean-field
interaction potential that departs from the kagome-lattice
geometry. The relevance of this potential can be quantified
by the ratio of the characteristic interaction energy and the
tunneling energy n0g=J, which is about 1 at the lattice depth
and density considered here [43]. It is then not surprising
that the band structure of this distorted overall lattice
potential no longer supports a flat n ¼ 3 band.
Our demonstrated ability to place a 87Rb gas into the

n ¼ 3 band of a J > 0 kagome lattice raises the possibility
that many-body states of interacting bosons in a flat band
[4,5,12] may be studied through transient equilibration of
atoms within an excited band. However, the excited-band

population in our experiment is unstable to decay, indicated
by the sharp momentum peaks of the excited coherent
Bloch state decaying to a broad momentum distribution
[see, e.g., data for the highest-density gas in Fig. 3(b)]. This
broad distribution grows to a significant fraction of the
total atom population within hundreds of μs, with shorter
lifetimes seen for higher-density gases in higher-depth
lattices. Through band mapping, we determine that this
decay produces atoms predominantly in the ground band.
Examining also the evolution of atoms prepared in the
n ¼ 2 (reached by accelerating the gas initially along x) or
n ¼ 4 bands, we observe the n ¼ 3 Bloch state to decay
most rapidly. It remains to be seen whether atoms prepared
in energy extrema of the renormalized n ¼ 3 band, pre-
dicted to lie at the Γ and K points, show greater stability.
The decay to lower bands may occur through collisions that
transfer energy into the loosely confined z direction of
motion. Such collisions may be forestalled by adding an
additional confining lattice along z.
In conclusion, in searching for experimental evidence of

the nondispersing nature of the n ¼ 3 band of the kagome
lattice, we find, instead, that interactions among atoms
placed within that band lead to significant band structure
renormalization. The emergence of a modified overall
lattice structure generated by atoms within a lattice is
reminiscent of experiments on quantum gases within
optical cavities [44,45]. In the optical-cavity experiments,
the emergent lattice is generated by light-induced extended-
range atomic interactions, whereas, in the present work, the
emergent potential is produced by direct local interactions.
Future work may examine which aspects of the noninter-
acting band structure become invalid for lattice-trapped
interacting systems, e.g., by studying the interplay between
hysteresis and band-geometry effects.
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