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The light-cone distribution amplitude (LCDA) of a heavy-light meson defined in heavy quark effective
theory (HQET) is a fundamental nonperturbative input to account for innumerable B meson exclusive
decay and production processes. On the other hand, the conventional heavy-flavored meson LCDA defined
in QCD also ubiquitously enters the factorization formula for hard exclusive B production processes.
Inspired by the observation that these two LCDAs exhibit the identical infrared behaviors, yet differ in the
ultraviolet scale of order mb or greater, we propose a novel factorization theorem for the heavy-light
mesons, that the LCDA defined in QCD can be further expressed as a convolution between the LCDA in
HQET and a perturbatively calculable coefficient function thanks to asymptotic freedom. This refacto-
rization program can be invoked to fully disentangle the effects from three disparate scales Q, mb, and
ΛQCD for a hard exclusive B production process, particularly to facilitate the resummation of logarithms of
type lnQ=mb and lnmb=ΛQCD in a systematic fashion.
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The hard exclusive hadron production is one of the major
battlefields of perturbative QCD [1]. If one denotes the hard
momentum transfer scale by Q, the famous collinear
factorization theorem [2,3] demands that the reaction
amplitude involving a single hadron can be expressed as
the following convolution integral:

M ¼
Z

1

0

dxTðx; μQÞΦQCDðx; μQÞ þO
�
1

Q

�
; ð1Þ

up to higher-twist corrections. Here 0 ≤ x ≤ 1 signifies the
light-cone momentum fraction of the quark inside the
hadron. T represents the perturbatively calculable hard-
scattering kernel, ΦQCD denotes the nonperturbative, yet
universal, leading-twist light-cone distribution amplitude
(LCDA) of the hadron defined in QCD. The factorization
scale μQ lies between Q and M ∼ ΛQCD (M denotes the
hadron mass), which enters both T and ΦQCD in a
prescribed manner such that the physical amplitude
becomes independent of this artificial scale. Specifically,

the μ dependence of the QCD LCDA is governed by a
celebrated renormalization group equation, usually referred
to as the Efremov-Radyushkin-Brodsky-Lepage (ERBL)
equation [4,5]:

μQ
d

dμQ
ΦQCDðx; μQÞ ¼

αsCF

π

Z
1

0

dyV0ðx; yÞΦQCDðy; μQÞ;

ð2Þ
with the color factor CF ¼ ðN2

c − 1Þ=ð2NcÞ, and Nc ¼ 3
being the number of color. The evolution kernel for a
helicity-zero meson reads

V0ðx; yÞ ¼
�
x
y

�
1þ 1

y − x

�
θðy − xÞ þ

�
x → x̄

y → ȳ

��
þ
; ð3Þ

with x̄≡ 1 − x. This equation can facilitate to resum large
collinear logarithm of type αs lnðQ=ΛQCDÞ in a typical hard
exclusive reaction. Note that the formalism in Eq. (1)
applies to any species of hadrons, irrespective of being light
or heavy, provided that Q ≫ M ≥ ΛQCD.
Alternative factorization framework also exists if the

reaction involves a heavy-flavor meson, such as B exclu-
sive decay process, exemplified by B → γlν [6–8]. By
exploiting the hierarchy mb ≫ ΛQCD, the HQET factori-
zation theorem [9,10] demands that the B exclusive decay
amplitude may also be cast into a convolution form:
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M ¼
Z

∞

0

dωT ðω; Q;mb; μHÞΦHQET
þ ðω; μHÞ þO

�
1

mb

�
;

ð4Þ

in the mb → ∞ limit. Here ω signifies the light-cone
momentum of the light spectator quark inside the B meson.
T again represents the perturbatively calculable hard-
scattering kernel thanks to asymptotic freedom, ΦHQET

þ
denotes the nonperturbative, yet universal, leading-power
LCDA of the Bmeson, with the b-quark field defined in the
heavy-quark effective theory (HQET) [11,12]. For a dis-
cussion about the model-independent properties of the B
meson LCDA in HQET, see [13]. A peculiar feature of
ΦHQET

þ ðωÞ is that its positive Mellin moments become UV
divergent, where one usually imposes a UV cutoff Λ to
regularize. Themb dependence is entirely encoded in T but
not in ΦHQET

þ . Unlike collinear factorization, here one does
not distinguish the scales Q and mb in the hard-scattering
kernel. The dependence of T and ΦHQET

þ on the factori-
zation scale μH, which lies between mb and ΛQCD, con-
spires to counterbalance each other in the physical
amplitude.
The scale dependence of the B meson LCDA defined in

the HQET side is controlled by the famous Lange-Neubert
evolution equation [14]:

μH
d

dμH
ϕHQET
þ ðω; μHÞ

¼ −
αsCF

4π

Z
∞

0

dω0γþðω;ω0; μHÞϕHQET
þ ðω0; μHÞ; ð5Þ

where the one-loop anomalous dimension γþ reads

γþðω;ω0; μHÞ ¼
�
Γð1Þ
cusp ln

μH
ω

− 2

�
δðω − ω0Þ

− Γð1Þ
cuspω

�
θðω0 − ωÞ
ω0ðω0 − ωÞ þ

θðω − ω0Þ
ωðω − ω0Þ

�
þ
; ð6Þ

with Γð1Þ
cusp ¼ 4. The explicit occurrence of ln μH in the

anomalous dimension might look peculiar. This evolution
equation can be employed to resum large soft logarithms of
form αslnnðmb=ΛQCDÞ (n ¼ 1, 2).
Apart from numerous B exclusive decay modes, we

emphasize that the HQET factorization formalism (4) can
also be fruitfully applied to exclusive B production
processes. Various exclusiveD� production processes have
been investigated long ago at tree level, essentially follow-
ing the ansatz of (4), yet coined with a different termino-
logy: heavy-quark recombination mechanism [15]. It is
worth noting that HQET factorization framework presents a
successful and economic account for the Dþ=D− produc-
tion asymmetry observed in various Fermilab fixed target
experiments [16,17]. Very recently, the exclusive processes
W → BðDsÞ þ γ have been calculated to order αs in the

context of HQET factorization [18]. We note that some
exclusive channels of W, Z radiative decays into heavy-
flavor mesons have previously been investigated in the
standard QCD collinear factorization [19].
One interesting question may be naturally posed: for a

hard exclusive B production process with scale hierarchy
Q ≫ mb ≫ ΛQCD, since both light-cone factorization (1)
and HQET factorization (4) appear to be applicable, how
can one manage to make the most optimized predictions?
Surely both factorization approaches are based upon

solid theoretical ground, nevertheless each of which has its
own strength and weakness. As mentioned before, a
notable merit of the light-cone approach is that large
collinear logarithm lnQ=mb can be efficiently resummed
by considering mb as an IR scale. However, an apparent
shortcoming of this approach is that the characteristic
feature of the heavy-flavor meson is not adequately
utilized, and the phenomenological constraints on B meson
LCDA defined in QCD are also limited. From theoretical
angle, it is evident that the QCD LCDA cannot be entirely
nonperturbative, since it entails the hard scale mb, and it is
definitely desirable if this perturbative effect can be
explicitly separated from the B meson QCD LCDA. On
the other hand, the strength of the HQET factorization is
that the heavy-quark nature of the B meson has been fully
exploited by treating mb as a UV scale. Moreover, much
phenomenological knowledge on the B meson LCDA
defined in HQET has been gleaned based on intensive
investigations on numerous B decay processes over the past
two decades. The weakness of this approach for exclusive
B production is that the hard-scattering kernel involves two
disparate scalesQ andmb, and the large collinear logarithm
may potentially ruin the convergence of perturbative
expansion.
The goal of this Letter is to show that these two

factorization approaches can be fruitfully combined to
make optimized predictions for hard exclusive heavy
meson production. The key is to establish a factorization
formula connecting two types of B meson LCDAs defined
in both QCD and HQET. As we shall see, through the
refactorization program, the effects from three disparate
scales, Q, mb, and ΛQCD, can be fully disentangled.
We first recapitulate how the B meson LCDAs are

framed in QCD and HQET. For simplicity, we will
concentrate on the B̄ meson composed of a b quark and
a light spectator antiquark q̄. Let a timelike four-vector vμ

represent the four-velocity of the B̄ meson, which satisfies
Pμ ¼ mBvμ and v2 ¼ 1. For convenience we also introduce
a reference null vector nμ satisfying n2 ¼ 0. The explicit
definitions for both LCDAs then become

ΦQCDðx; μQÞ≡ fBϕQCDðx; μQÞ

¼ −i
Z

dz−

2π
eixP

þz−h0jq̄ðzÞ½z; 0�=nγ5bð0ÞjB̄ðPÞi; ð7aÞ
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ΦHQET
þ ðω; μHÞ≡ f̂Bϕ

HQET
þ ðω; μHÞ

¼ −i
mBvþ

Z
dt
2π

eiωth0jq̄ðzÞ½z; 0�=nγ5hvð0ÞjB̄ðvÞi; ð7bÞ

where zμ ¼ z−nμ is also a null coordinate vector, t ¼ v · z.
We have also defined Pþ ¼ n · P and vþ ¼ n · v. ½z; 0�
represents the lightlike gauge link, inserted to ensure gauge
invariance. x in Eq. (7) designates the light-cone momen-
tum fraction of the light spectator quark q̄. (In Ref. [20], the
author adopted the same ω in the definition of the Fourier
transformed QCD LCDA as in the definition of HQET
LCDA; here we choose the light-cone fraction x as the
Fourier conjugate variable to respect the tradition.) The
QCD decay constant fB can be factored onto the HQET
decay constant f̂B by integrating out hard quantum fluc-
tuation of order mb through the perturbative matching
[21,22]:

fB ¼ f̂BðμHÞ
�
1 −

αsCF

4π

�
3 ln

μH
mb

þ 2

��
þOðα2sÞ: ð8Þ

Notice the only difference of two LCDAs in Eq. (7) is
that the b quark field is defined in QCD for the former,
while defined in HQET for the latter. Obviously these two
LCDAs have drastically different ultraviolet behavior, as is
evident in the completely different evolution of Eqs. (2) and
(5). Nevertheless, it is crucial to observe that these two
objects possess exactly the identical infrared behavior,
since HQET faithfully reproduces the IR aspects of
QCD. Since the perturbative scale mb is still encompassed
in ΦQCD, it sounds appealing to explicitly factor this short-
distance effect out of the QCD LCDA. Conceivably, this
scale separation can be achieved through the following
refactorization program:

ΦQCDðx; μQÞ ¼
Z

∞

0

dωZðx;ω; mb; μQ; μHÞΦHQET
þ ðω; μHÞ:

ð9Þ

The coefficient function Z captures all the effect of order
mb ≫ ΛQCD and thus can be computed in perturbation
theory thanks to asymptotic freedom. It can be organized as

Zðx;ω; mb; μQ; μHÞ ¼ Zð0Þðx;ω; mbÞ

þ αsCF

4π
Zð1Þðx;ω; mb; μQ; μHÞ

þOðα2sÞ: ð10Þ

The physical picture underlying Eq. (9) may also be
lucidly envisioned in the context of strategy of region [23].
When computing the perturbative correction to the QCD
LCDA in Eq. (7a), the loop momentum flowing into the b
can be partitioned into either hard (lμ ∼mb) or soft

(lμ ≪ mb) regions. It is the soft region that is exactly
responsible for the contribution to the HQET LCDA
defined in Eq. (7b), which is also equivalent to taking
mb → ∞ limit prior to conducting the loop integration.
Therefore, the Z function in Eq. (9), which just accounts for
the difference between these two LCDAs, receives con-
tribution solely from the hard loop region; therefore, it can
be accessed in perturbation theory thanks to the asymptotic
freedom.
Before proceeding, we pause to remark that the refacto-

rization program here is in spirit analogous to the factori-
zation of the LCDA of the doubly flavored heavy
quarkonium, Bc, into the nonperturbative local NRQCD
matrix element multiplied with the perturbatively calcu-
lable coefficient function [24,25]. It is amusing to point out
that the structure of Eq. (9) also looks similar to the
factorization formula that links the quasi and light-cone
parton distributions, which has been recently formulated in
the context of the large-momentum effective theory by
Ji [26]. There the light-cone distribution function has the
support (0,1), while the quasidistribution has unbounded
support ð−∞;þ∞Þ. Of course, a notable difference
between these two situations is that both B meson dis-
tribution amplitudes in our case are light-cone correlators.
Determination of the Z function can be best fulfilled via

the standard perturbative matching procedure. Since the Z
factor is insensitive to the IR physics, one can freely replace
the nonperturbative B̄ meson by a fictitious one, i.e., a free
bq̄ pair, and compute the corresponding ΦQCD and ΦHQET

þ
in perturbation theory:

ΦQCDðx; μQÞ ¼ ΦQCDð0Þðx; μQÞ

þ αsCF

4π
ΦQCDð1Þðx; μQÞ þOðα2sÞ; ð11aÞ

ΦHQET
þ ðω; μHÞ ¼ ΦHQETð0Þ

þ ðω; μHÞ

þ αsCF

4π
ΦHQETð1Þ

þ ðω; μHÞ þOðα2sÞ: ð11bÞ

One is then able to solve Eq. (9) to deduce the Z factor
iteratively, order by order in αs. Note this matching
procedure is similar to deducing the perturbative Z factor
that connects the quasi parton distribution functions and
light-cone parton distributions [27].
One can set up the kinematic configuration for jbq̄i at his

disposal. For example, one may simply follow [18] to
choose a static b and a moving q̄. Fortunately, by modeling
the B meson as a free bq̄ pair with vanishing relative
motion, Bell and Feldmann had already computed
ΦQCD and ΦHQET

þ through order αs a decade ago [28].
Consequently, based on their results, we can directly extract
the intended order-αs part of the Z function. There the
spectator light quark q̄ is endowed with a nonvanishing
constitute mass mq, which serves to regularize the mass
(collinear) singularity. At lowest order, both perturbative
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LCDAs of the fictitious B̄ meson are simply δ functions
[28]:

ϕQCDð0ÞðxÞ ¼ δðx − x0Þ;
ϕHQETð0Þ
þ ðωÞ ¼ δðω −mqÞ; ð12Þ

with x0 ¼ mq=mB and mB ¼ mb þmq. From Eq. (9), one
readily finds that the tree-level Z factor is also a simple δ
function.

Zð0Þðx;ω; mbÞ ¼ δ

�
x −

ω

mb þ ω

�
: ð13Þ

Reassuringly, the perturbative Z factor is absent of the IR
scale mq. The δ function guarantees that the ωwith support
ð0;∞Þ is monotonically mapped onto x with support (0,1).
By solving Eq. (9) to next-to-leading order, we then

obtain the Z factor of order αs (the substitution ofmq to ω is

due to the striping off the LCDAs ϕQCDð0ÞðxÞ and
ϕHQETð0Þ
þ ðωÞ from the convolution in order to reveal the

Z factor at the next-to-leading order of αs):

Zð1Þðx;ω;mb;μQ;μHÞ¼ϕQCDð1Þðx;μQÞ
����
mq→ω

−
mb

ð1−xÞ2ϕ
HQETð1Þ
þ

�
mbx
1−x

;μH

�����
mq→ω

−
�
3ln

μH
mb

þ2

�
Zð0Þðx;ω;mbÞ: ð14Þ

By construction, the Z factor automatically obeys the
ERBL equation and LN equation.
Plugging the explicit order-αs expressions for two

LCDAs [28] into Eq. (14), we end up with

Zð1Þðx;ω; mb; μQ; μHÞ ¼ 2

��
ln

μ2Q
ðmb þ ωÞ2ðxω − xÞ2 − 1

���
1þ 1

xω − x

�
x
xω

θðxω − xÞ þ
�

x ↔ x̄

xω ↔ x̄ω

���
½x�þ

þ 4

�
xð1 − xÞ
ðx − xωÞ2

�
½x�þþ

þ 2δ0ðx − xωÞ
�
2xωð1 − xωÞ ln

xω
1 − xω

þ 2xω − 1

�

− ωx
dωx

dx

�
2

��
ln

�
μ2H

ðωx − ωÞ2
�
− 1

��
θðω − ωxÞ
ωðω − ωxÞ

þ θðωx − ωÞ
ωxðωx − ωÞ

��
½ω�þ

þ 4θðωx − 2ωÞ
ðωx − ωÞ2

þ4

�
θð2ω − ωxÞ
ðωx − ωÞ2

�
½ω�þþ

−
δðωx − ωÞ

ω

�
1

2
ln2

μ2H
ω2

− ln
μ2H
ω2

þ 3π2

4
þ 2

��
−
�
3 ln

μH
mb

þ 2

�
δðx − xωÞ;

ð15Þ

where for brevity we have introduced the shorthands

xω ≡ ω

mb þ ω
; ωx ≡ mbx

1 − x
; ð16Þ

by noticing that the prefactor of the second term at the
right-hand side of Eq. (14), we rewrite
mb=ð1 − xÞ2 ¼ dωx=dx. The “þ” and “þþ” functions
are understood in the distributive sense, whose exact
definition can be found in [28]. The subscript ½x=ω�
enforces whether to convolute the plus function with a
test function over x or ω. It is reassuring that μQ and μH
dependence of Zð1Þ in Eq. (15) are explicitly compatible
with the evolutions equations in Eqs. (2) and (5).
Our refactorization program has obvious strength to

optimize the theoretical predictions for hard exclusive B prod-
uction processes. Plugging Eq. (9) into Eq. (1), one obtains

M ¼
Z

∞

0

dωT expd

�
ω;

Q
mb

; μH

�
ΦHQET

þ ðω; μHÞ

þO
�
mb

Q
;
1

mb

�
; ð17aÞ

T expd

�
ω;

Q
mb

; μH

�
¼

Z
1

0

dxTðx; μQÞZðx;ω; mb; μQ; μHÞ:

ð17bÞ
Equation (17) is the desired factorization formula that

merges the virtues of both collinear and HQET factoriza-
tion approaches, which is assumed to yield the most
optimized prediction for hard exclusive B production. As
indicated in Eq. (17b), a more effective way of organizing
calculation is to first utilize the existing knowledge on the
hard-scattering kernel TðxÞ (typically proportional to 1=x)
in collinear factorization. Since the quark mass has been
dropped, there is no difference for the hard-scattering
kernel between B and π production. One then employs
Eq. (17b) to obtain an effective hard-scattering kernel
T expd. In accordance with the HQET factorization (17a),
one can convolve this effective T expd with ΦHQET

þ
to generate ultimate predictions. Notice that the T expd is
not identical with the T that arises from the literal fixed-
order calculation in HQET factorization (4). Nevertheless,
T expd amounts to expanding T to lowest order in mb=Q.
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Consequently, T expd can only depend onQ=mb logarithmi-
cally. We have explicitly verified that, by invoking Eq. (17),
our T expd indeed coincides with the expanded hard kernel
T through order αs for the W → Bγ process [18].
Another remarkable merit of Eq. (17) is to expedite the

resummation of the collinear logarithm αs lnðQ=mbÞ to all
orders. Since the μQ dependence of the Z function is
governed by the ERBL equation, we may follow the recipe
outlined in [29] that also employs the ERBL equation to
resum the leading collinear logarithm for exclusive quar-
konium production, to recast Eq. (17b) into

T expd
LL ðω;Q=mb;μHÞ¼

Z
1

0

dxTðx;QÞZðx;ω;mb;Q;μHÞ;

¼
Z

1

0

dxTð0ÞðxÞexp½κCFV0��Zð0Þðx;ω;mbÞ; ð18Þ

where, in the second equation, we have substituted
the schematic solution of the ERBL equation for
Zðx;ω; mb; μQ ¼ QÞ, which is evolved from the initial
IR scale at μQ ∼mb to the UV scale μQ ∼Q. The meaning
of the “�” operation will become self-evident below. κ is
defined by

κ ≡ 2

β0
ln
αsðm2

bÞ
αsðQ2Þ ≈

αsðQ2Þ
2π

ln
Q2

m2
b

þ β0
α2sðQ2Þ
ð4πÞ2 ln2

Q2

m2
b

þ � � � ; ð19Þ

where β0 ¼ 11
3
Nc − 2

3
nf is the one-loop QCD β function,

and nf ¼ 5 is the number of active quark flavors.
Equation (18) can be expanded iteratively [29],

T expd
LL ðω; Q=mb; μHÞ ¼

Z
1

0

dxTð0ÞðxÞZð0Þðx;ω; mbÞ þ κCF

Z
1

0

dx
Z

1

0

dyTð0ÞðxÞV0ðx; yÞZð0Þðy;ω; mbÞ

þ κ2C2
F

2

Z
1

0

dx
Z

1

0

dy
Z

1

0

dzTð0ÞðxÞV0ðx; yÞV0ðy; zÞZð0Þðz;ω; mbÞ þ � � � : ð20Þ

For a leading-twist (helicity-conserving) process, one typically bears Tð0ÞðxÞ ∝ 1=x. Substituting this together with
Eq. (13) into Eq. (20), One can choose the order of multiple integration from the left to right, and leaves the integration over
Zð0Þ in the last step. One then identifies the leading collinear logarithms at arbitrarily prescribed perturbative order. For
example, at order αs, we obtain

T expd
LL ðωÞ ∝ mb

ω

�
1þ αsCF

4π
ln
Q2

m2
b

�
3þ 2 ln

ω

mb

�
þ
�
αs
4π

�
2

CFln2
Q2

m2
b

�
CF

2

�
3þ 2 ln

ω

mb

�
2

þ β0
2

�
3þ 2 ln

ω

mb

��
þ � � �

�
:

ð21Þ

Reassuringly, the order-αs collinear logarithm indeed co-
incides with the expanded NLO perturbative correction to
the hard-scattering kernel in HQET factorization for the
process W → Bþ γ [18], once Q is identified with mW .
The coefficient of the order-α2s leading collinear logarithms
awaits the confirmation by the future explicit two-loop
calculation, which is certainly rather challenging. It is also
possible, analogous to [29], to resum these leading collin-
ear logarithms to all orders in αs with the aid of some
numerical recipes. We will explicitly illustrate the resum-
mation for W → BðB�Þ þ γ in a long write-up.
Note that our refactorization framework is in a similar

spirit to invoke the refactorization approach to recover the
NRQCD short-distance coefficients associated with exclu-
sive Bc production through order αs, when expanded to the
leading order in mb=Q [30,31].
In summary, in this Letter, we have established a

novel factorization theorem (9) that connects two kinds of

important LCDAs for heavy-flavor mesons through a per-
turbatively calculable coefficient function. This perturbative
function has been determined through order αs. The physics
underlying this factorization theorem looks quite lucid, just
because HQET shares the identical IR behavior as QCD. It
may look somewhat surprising why such a simple factori-
zation formula has not been discovered until now. Based on
this refactorization picture, we have devised a master
formula, (17), tailored for tackling hard exclusive B pro-
duction processes. This factorization formula has inherited
the virtues of both collinear and HQET factorization
approaches, which is believed to generate the most optimized
theoretical predictions. As a remarkable merit, this master
formula also enables us to effectively resum large logarithms
of type lnQ=mb and lnmb=ΛQCD in a controlled manner.
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APPENDIX: Subtlety in the moments
of B meson LCDAs

The non-negative moments of the QCD LCDA are
directly related to the matrix-elements of local QCD
operators which are well-defined and finite. However, a
famous symptom of the HQET LCDA is that its
non-negative moments are UV divergent as indicated in
a model-independent analysis given in [13]. For instance,
its normalization is logarithmically divergent and can
be regularized by imposing a UV cutoff Λ on the
integral,

Z
Λ

0

dωϕHQET
þ ðω;μHÞ ¼ 1−

αsCF

4π

�
1

2
ln2

μ2H
Λ2

þ ln
μ2H
Λ2

þ π2

12

�

þOðα2sÞ þO
�
ΛQCD

mb

�
: ðA1Þ

Such defects of HQET LCDA may make one worry about
the validity of the factorization formula that we propose in
this work.
In this Appendix, we elaborate on how the LCDA

moments defined in QCD and HQET are interrelated.
We will show that the UV divergences in non-negative
moments of HQET LCDA will not cause any trouble. We
start with the first inverse moment of the QCD LCDA
because it plays the most important role in phenomeno-
logical applications:

	
1

x



≡

Z
1

0

dx
x
ϕQCDðx; μQÞ

¼
Z

∞

0

dω

�Z
1

0

dx
x
Zðx;ω; μQ; μHÞϕHQET

þ ðω; μHÞ
�
:

ðA2Þ

Substituting the explicit expression of the Z factor
through OðαsÞ [Eqs. (13) and (15)] into Eq. (A2), and
changing the variable x → ωx=ðωx þmbÞ, hence
dx½mb=ð1 − xÞ2� → dωx, we then obtain

Z
1

0

dx
x
Zð0Þðx;ω; mb; μQ; μHÞ ¼

1

xω
¼ mb

ω
þ 1; ðA3aÞ

Z
1

0

dx
x
Zð1Þðx;ω;mb;μQ;μHÞ¼

1

2
ln2

μ2H
Λ2

þ ln
μ2H
Λ2

þπ2

12

þ 1

xω

�
ð3þ2 lnxωÞ ln

μ2Q
ðmbþωÞ2−6ðxω lnxωþ x̄ω ln x̄ωÞ−2 lnxωþ4Li2ðxωÞ−2ln2xω−

2π2

3
þ6

�

þmb

ω

�
1

2
ln2

μ2H
ω2

− ln
μ2H
ω2

þ3π2

4
−2

�
þO

�
ω

Λ

�
; ðA3bÞ

where Λ represents the UV cutoff imposed on the
upper limit of integration over ωx, just the same as the
regulator for the normalization of the HQET LCDA in (A1).
Substituting (A3) into (A2) leads to

	
1

x



¼

Z
∞

0

dω
mb

ω
ϕHQET
þ ðω; μHÞ

þ
�
1þ αsCF

4π

�
1

2
ln2

μ2H
Λ2

þ ln
μ2H
Λ2

þ π2

12

��

×
Z

Λ

0

dωϕHQET
þ ðω; μHÞ þ � � �

¼ mb

Z
∞

0

dω
ω

ϕHQET
þ ðω; μHÞ þ 1þ � � � : ðA4Þ

The ellipses in Eq. (A4) denote the terms which may
depend on Λ but at a higher order in αs and ΛQCD=mb.
One can see that the explicit Λ dependence of the terms
in the second line in Eq. (A4) gets canceled between the
prefactor and normalization of HQET LCDA by imple-
menting Eq. (A1). Therefore, we conclude that, despite
the occurrence of the artificial cutoff Λ in the inter-
mediate step, the first inverse moment of the LCDA in
QCD can be unambiguously related to its counterpart in
HQET. In the practical applications, one usually neglects
the unity in the line of Eq. (A4), since it is power
suppressed with respect to the first inverse moment of the
HQET LCDA. In this sense, we need only retain the
leading term in ω=mb expansion in Eq. (A3). It is worth
remarking that we can obtain a relation between the first
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inverse moments of the QCD and HQET LCDAs similar
to the one obtained in [20]. But we find that some
additional logarithmic inverse moments are missed
in [20].
For theoretical curiosity, one may also match the non-

negative moments of LCDA in QCD (albeit in absence of
clear phenomenological interest) into the matrix elements
of HQET operators. It turns out that the moments of QCD
LCDA with non-negative powers can be related to the
following convolution with HQET LCDA:

Z
∞

0

dω

�
ω

ωþmb

�
n
ϕHQET
þ ðω; μHÞ: ðA5Þ

The above convolution possesses the identical degree
of UV divergence as the normalization integral of
ϕHQET
þ ðω; μHÞ, because ω=ðωþmbÞ ∼ 1 as ω ≫ mb.

This UV divergence can be removed by following the
same procedure that leads to Eq. (A4), and one can get
finite non-negative moments for QCD LCDA from our
factorization theorem. However, this is somewhat off the
main topic of our Letter. We decide to leave a detailed
analysis of this issue in the future work.
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