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We explore the existence of conformal field theories that persistently break a global symmetry at finite
temperature. We identify vector models in (3 − ϵ) spatial dimensions that have internal symmetries broken
at any temperature. We study these systems in the small ϵ regime and in the large rank limit. The latter
displays a conformal manifold and a moduli space of vacua deformed at finite temperature. We touch upon
a candidate in d ¼ 2 dimensions.
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Introduction.—Spontaneous symmetry breaking is
common at low temperatures (see, for instance, [1–4]).
In this Letter, we investigate the possibility of symmetry
breaking that persists at all temperatures. We address the
problem by studying conformal field theories (CFTs) for
which demonstrating the breaking at any finite temperature
is sufficient. For a more detailed analysis, we refer the
reader to [5].
Let us begin by considering quantum field theories

(QFTs) in dþ 1 spacetime dimensions. It is commonly
expected that at high temperatures (βth → 0), their sym-
metries are unbroken. This is because at finite temperature
we do not minimize the energy but instead we minimize

F ¼ E −
S
βth

(where S is the entropy), and hence at high temperature the
high entropy states dominate. Since such states are typi-
cally disordered, one usually expects that, for high enough
temperatures, the symmetry will be restored.
There are many examples in the literature of systems

that break some symmetries at intermediate temperatures.
For instance, in [6], the author demonstrated that for an
OðNÞ ×OðNÞ-symmetric scalar field theory in (3þ 1)
dimensions, it is possible to have a phase at nonzero
temperatures where one of the OðNÞ groups is broken.
However, since the theory considered there is not UV
complete, the above phenomenon could only be verified up
to temperature scales below the UV cutoff. For more
discussions on symmetry breaking at intermediate temper-
atures, we refer the reader to [7–17]. In this Letter, however,
our focus will be on the true high temperature limit.
Using the relationship between finite temperature and a

theory on a circle, one concludes that in d ¼ 2 only discrete
symmetries can break spontaneously at finite temperature

[18], and in d ¼ 1 no symmetries whatsoever can break at
finite temperature.
The AdS=CFT correspondence links the question of

symmetry restoration at high temperatures with the no-hair
“theorem.” According to the AdS=CFT correspondence
[19–21], a conformal theory in Rd;1 is dual to the Poincaré
patch of AdSdþ2. The field theory at finite temperature
corresponds to a black brane geometry in AdSdþ2 [22]. The
statement that there is symmetry breaking in the CFT
translates to hair on the black brane [23–25]. To our
knowledge no such hair has been exhibited for uncharged
black branes that dominate the thermal ensemble. See
[26–31] for some relevant references.
The notion of arbitrarily high temperature has to be

sharpened. In lattice systems with finitely many degrees of
freedom per site, infinite temperature corresponds to the
unit density matrix

e−βthH → I:

Let us now take some order parameter localized at a site.
Since in the state I all sites decouple, the expectation values
of such local operators vanish. Hence, for such lattice
systems the symmetries are restored at sufficiently high
temperature [32].
We would like to consider temperatures that are much

larger than the inverse correlation length but much smaller
than the inverse lattice spacing distance. In fact, in QFTs,
the state I does not necessarily make sense, and the high
temperature limit is potentially nontrivial.
A QFT does not necessarily require a lattice to be

defined. It can be UV complete by itself. The short distance
limit is then described by a CFT. The question about the
behavior of the theory at very high temperatures can be then
translated into a question about CFT at nonzero tempera-
ture. Since there is no inherent scale in a CFT, any nonzero
temperature is equivalent to any other nonzero temperature.
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Therefore we may ask this question: Are there unitary,
local, nontrivial CFTs that break global symmetry at finite
temperature?
Unitarity appears to be important since in ensembles

with a chemical potential e−βthH−iμQ it is already known that
one can sometimes guarantee symmetry breaking for any
radius of the thermal circle [33–37]. This is due to
cancellations as a result of a purely imaginary chemical
potential. On the other hand, for the ensemble e−βthH, no
such example exists to our knowledge.
The main point in this Letter is the construction of

conformal models in d ¼ 3 − ϵ dimensions that break a
symmetry at finite temperature (strictly speaking, CFTs in
fractional dimensions are not fully unitary models [38]).
We will also provide some hints for a model in d ¼ 2.
Our examples are in a class of conformal vector models.

We first argue that such symmetry breaking at finite
temperature cannot occur in models with a single quadratic
Casimir. This covers many familiar quantum magnets. In
the biconical class of fixed points [39–42], which have two
quadratic Casimirs, we find examples of symmetry break-
ing at finite temperature.
We treat the biconical models both in the limit of small ϵ

and in the limit of finite ϵ and large rank. We find that the
two approaches overlap and agree. These biconical CFTs
have symmetry group OðmÞ ×OðN −mÞ. For instance
(and without loss of generality) if m < N=2, the unbroken
symmetry group is Oðm − 1Þ ×OðN −mÞ. Therefore,
there is no thermal gap [43], and instead we have
Nambu-Goldstone bosons living on Sm−1. In the equal
rank case 2m ¼ N, no symmetry breaking occurs at finite
temperature.
We find some special features when studying the large

rank limit of the biconical models. We find an exactly
marginal operator and a moduli space of vacua, i.e., a
degenerate family of ground states, though these models
have no supersymmetry. (A similar thing happens in
[44–46].) Moreover, the ground state energy of the thermal
effective potential does not depend on temperature. In
addition, the moduli space of vacua does not disappear at
finite temperature but instead is deformed. This allows us to
establish symmetry breaking in d ¼ 3 − ϵ dimensions for
finite but small enough ϵ. In d ¼ 2, the Nambu-Goldstone
bosons on Sm−1 are lifted by small nonperturbative effects,
and hence, strictly speaking, no symmetry breakdown
occurs. It is still interesting, though, that the thermal gap
is exponentially small for large m.
An interesting special case is the class of models with

symmetry Oð1Þ ×OðN − 1Þ. We find that within the ϵ
expansion, the symmetry is broken at finite temperature to
OðN − 1Þ. These models are therefore possible candidates
for a unitary CFT in 2þ 1 dimensions with persistent
symmetry breaking at finite temperature.
Quantum critical points with such behavior at finite

temperaturewould lead to rather unfamiliar phase diagrams.

Symmetry breaking in the CFTat finite temperature implies
that, had we started in the ordered zero-temperature phase,
the order could persist for any temperature. Schematically, if
we had just one relevant operator, one could find a phase
diagram such as in Fig. 1.
Vector models.—We consider models with N real scalar

fields ϕi, i ¼ 1;…; N and potential

V ¼ 1

4!
λijklϕiϕjϕkϕl ð1Þ

in 4 − ϵ spacetime dimensions. These models are interact-
ing systems for finite positive ϵ. There are two limits in
which we can carry out a perturbative study. One is when
ϵ ≪ 1, and the other is when the number of fields N, the
rank, is very large. We will study both limits, allowing us to
establish a rather coherent picture for the thermal properties
of such models. We will start from the limit where ϵ ≪ 1 is
the smallest parameter.
Thermal physics in the ϵ expansion:We are interested

in fixed points in the ϵ expansion [47]. Defining λ̃ ¼
ðλ=16π2ϵÞ, the fixed point equation becomes

λ̃ijkl ¼ λ̃ijmnλ̃mnkl þ 2 permutations: ð2Þ

As long as the fixed point equation, Eq. (2), is satisfied,
the potential is bounded from below [42]. This follows
from the fixed point equation since λ̃ijklϕiϕjϕkϕl ∼
Trðλ̃ijmnϕiϕjÞ2, where the square means the square of a
matrix with the indices mn.
To compute the thermal mass, we integrate out the

nonzero Matsubara modes. We find that to leading order
in ϵ the thermal mass squared matrix is given by

M2
ij ¼

β−2th
24

λijkk ¼
2

3
π2ϵβ−2th λ̃ijkk: ð3Þ

This is not manifestly positive for solutions of Eq. (2).

Ordered Disordered 

Relevant op

T

CFT

FIG. 1. A possible phase diagram in a theory where the critical
point breaks a symmetry at finite temperature.
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Let G ≤ OðNÞ be the symmetry group of the scalar
potential Eq. (1). Suppose thatG has only a single quadratic
invariant. This is equivalent to requiring that the OðNÞ
fundamental representation is irreducible underG. For such
models, one can prove that the thermal mass matrix is
positive definite, and thus there is no symmetry breaking at
finite temperature. The class of models with a single
quadratic invariant includes the OðNÞ models and the
cubic, tetrahedral, bifundamental, MN, tetragonal, and
Michel fixed points.
One interesting class of models not covered by the

above no-go theorem are the biconical models that have
OðmÞ ×OðN −mÞ symmetry. These models have two
quadratic invariants. Let ϕ1 be a vector of length m and
ϕ2 be a vector of length N −m. We have three quartics that
need to be tuned to their fixed point values α0; β0; γ0:

V ¼ α0

8
ðϕ2

1Þ2 þ
β0

8
ðϕ2

2Þ2 þ
γ0

4
ϕ2
1ϕ

2
2:

The one-loop equations for α, β, γ (which differ from
α0; β0; γ0 by 16π2ϵ) are

α ¼ α2ðmþ 8Þ þ γ2ðN −mÞ; ð4Þ

β ¼ β2ðN −mþ 8Þ þmγ2; ð5Þ

1 ¼ αðmþ 2Þ þ βðN −mþ 2Þ þ 4γ: ð6Þ

(In the last equation, we assumed that γ ≠ 0.) The
solution α ¼ β ¼ γ ¼ ½1=ðN þ 8Þ� is the OðNÞ-invariant
fixed point. We will discard it since the no-go theorem
applies to it.
The thermal mass matrix is proportional to

M2 ∼

0
BBB@

αðmþ 2ÞδAB 0

þγðN −mÞδAB
βðN −mþ 2Þδab

0 þγmδab

1
CCCA: ð7Þ

First, consider the simpler case of equal rank, 2m ¼ N.
We have the solution with enhanced OðNÞ symmetry, and,
in addition,

α ¼ β ¼ m
2ðm2 þ 8Þ ; γ ¼ 4 −m

2ðm2 þ 8Þ : ð8Þ

For m > 4, we have γ < 0, but the potential is still
increasing in all directions because γ2 < α2. The thermal
masses squared are both proportional to αðmþ 2Þ þ γm.
One can verify that the thermal masses are always positive.
In conclusion, the equal rank biconical critical model has
no symmetry breaking at finite temperature.
We now turn our attention to nonequal rank models. We

will keep ϵ as the smallest parameter, but we will now take

large N. In the large N limit, the couplings α, β, γ all
scale like 1=N. We rescale the couplings accordingly:
α̃ ¼ Nα; β̃ ¼ Nβ; γ̃ ¼ Nγ. To leading order in 1=N,

α̃ ¼ xα̃2 þ ð1 − xÞγ̃2; ð9Þ

β̃ ¼ ð1 − xÞβ̃2 þ xγ̃2; ð10Þ

1 ¼ xα̃þ ð1 − xÞβ̃; ð11Þ

where we have denoted x ¼ m=N.
The three beta function equations, Eqs. (9), (10), and

(11), are degenerate. One gets a circle of fixed points
parameterized by γ̃∈f−½1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1−xÞp �;½1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞp �g.

One expects that generic points on this conformal circle do
not survive finite rank corrections (see Fig. 2).
One can check that α̃ β̃ ¼ γ̃2 for all γ̃. Therefore, there is

always a flat direction in field space at zero temperature as
long as γ̃ < 0. Thus, the large rank limit leads to a line of
fixed points, and those with γ̃ < 0 have a flat direction in
field space at zero temperature. The flat direction persists
even at finite temperature! Indeed, the thermal mass term
in the potential is proportional to ½xα̃þ ð1 − xÞγ̃�ϕ2

1 þ
½ð1 − xÞβ̃ þ xγ̃�ϕ2

2. We find that it vanishes on the zero
temperature flat direction as long as γ̃ < 0. Therefore, the
moduli space of finite temperature vacua is the hyperbola

ffiffiffi
α

p
ϕ2
1 −

ffiffiffi
β

p
ϕ2
2 þ

xαþ ð1 − xÞγ
12

ffiffiffi
α

p Nβ−2th ¼ 0; ð12Þ

where ϕ1 and ϕ2 are the thermal expectation values of the
corresponding fields.
If the hyperbola is not degenerate (i.e., it does not

contain the origin), regardless of the form of the small
corrections due to finite rank, the vacuum would be away
from the origin. In the equal rank case, the fixed point that
survives the 1=N expansion has α̃¼−γ̃¼1. The hyperbola

FIG. 2. A circle of fixed points in the large rank limit. The blue
dots and red star surely survive the finite rank corrections, but
there is another fixed point with γ < 0 that likewise survives the
finite rank corrections.
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degenerates, and the origin remains as the only true
vacuum. More generally, γ̃ of the fixed point that survives
the expansion in 1=N must satisfy the radical equation

4xð1−xÞγ̃�ðxÞ3−20xð1−xÞγ̃�ðxÞ2þ3γ̃�ðxÞþ9¼0: ð13Þ

Thus, we obtain the biconical fixed point for 0 < x < 1
with the following leading large N values of the couplings:

ðα̃; β̃; γ̃Þ ¼
�
1þ sgnðx − 1

2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞγ̃�ðxÞ2

p
2x

;

1 − sgnðx − 1
2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞγ�ðxÞ2

p
2ð1 − xÞ ; γ̃�ðxÞ

�
:

ð14Þ

It turns out that one of the two thermal masses is negative
for x ≠ 1=2 for the fixed point (14). Therefore, the hyper-
bola (12) is nondegenerate. This means that one necessarily
has finite temperature symmetry breaking even at finite
nonequal rank.
Upon considering finite rank corrections, only one point

on the hyperbola remains as the true vacuum. It is important
to find which one it is since the symmetry breaking pattern
depends on it.
Without loss of generality, we take 1=2 < x < 1. One

finds that the vacuum is at the vertex of the hyperbola. In
terms of γ̃� which solves (13), we find

ðΦ2
1;Φ2

2Þ¼
�
0;
γ̃2�ð2x−2x2Þþ γ̃�ð−2x2þ5x−3Þ−3x

12γ̃�½3−4xð1−xÞγ̃��
β−2th

�
;

ð15Þ

while for x ¼ 1=2, ðΦ2
1;Φ2

2Þ ¼ ð0; 0Þ. We conclude that for
the finite nonequal rank case, we found a critical point with
symmetry breaking at arbitrary nonzero temperature and
the following symmetry breaking pattern:

OðmÞ ×OðN −mÞ

⟶
β−1th >0

8>><
>>:

Oðm − 1Þ ×OðN −mÞ m < N
2

OðmÞ ×OðN −m − 1Þ m > N
2

no breaking m ¼ N
2

: ð16Þ

LargeN analysis:Here we explore the largeN limit of the
biconical model with OðmÞ ×OðN −mÞ symmetry and
fixed m=N in d spatial dimension. While small ϵ makes the
model perturbatively tractable, the largeN techniques allow
resummation of the perturbation series, and therefore some
nonperturbative aspects of the model are elucidated in this
limit. This study allows some of the results of the previous
section to be extended to finite ϵ.
LargeN vector modes are approximately free. Hence, the

ground state approaches a Gaussian state as N → ∞

[48,49], i.e., up to a normalization constant, it takes the
following form in the space of fields:

Ψðϕ1;ϕ2Þ ∝ exp

�
−
1

2

X2
i¼1

Z
ddk
ð2πÞd ωiðkÞjϕiðkÞj2

�
; ð17Þ

where ωiðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
. In position space, it can be

written as

Ψðϕ1;ϕ2Þ∝ e−
1
4

P
2

i¼1

R
ddx

R
ddy½ϕiðxÞ−σi�D−1

i ðx−yÞ½ϕiðyÞ−σi�; ð18Þ

where D−1
i ðx − yÞ is the Fourier transform of 2ωiðkÞ, and

two arbitrary constants σi parameterize the location of the
Gaussian state in the space of fields.
To determine the values of m2

i and σi for the biconical
model at the fixed point, we resort to this variational
principle [50]:

W ¼ hΨjHjΨi ≥ h0jHj0i;

H¼ 1

2
πiπi þ

1

2
∇ϕi∇ϕi þ

gBij
4N

ϕ2
iϕ

2
j ; 0 ≤ i; j ≤ 2: ð19Þ

HereW is the variational functional, j0i is the vacuum state
of the model governed by the Hamiltonian density H, and
jΨi represents a family of normalized trial states (18). The
idea is to minimize the lhs with respect to the variational
parameters m2

i and σi to find an approximation to the
ground state energy. Evaluating W boils down to Gaussian
integration.
In the large N limit, the renormalized couplings gij lie on

a curve defined by

detðgijÞ ¼ 0; xg11 þ ð1 − xÞg22 ¼ 8π2ϵ: ð20Þ

For each set of these couplings, the minimum of W, which
is obtained at W ¼ 0, lies along a flat direction in field
space

m2
i ¼ 0;

�
σ21
σ22

�
¼

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22=g11

p
1

�
μ2−ϵ; ð21Þ

for signðg12Þ ¼ ∓1, where μ is an arbitrary energy scale,
and ðσ21; σ22Þ is aligned along the eigenvector of gij with
zero eigenvalue. Each field configuration along the flat
direction can serve as a ground state of the theory.
Since σ2i ≥ 0, we conclude that for g12 ≥ 0 there is a

unique vacuum at μ ¼ 0 that respects the symmetries,
whereas for g12 < 0 there is a flat direction in field space.
At the origin, scale invariance, the OðmÞ, and OðN −mÞ

symmetries are all retained. Away from the origin in
field space, scale invariance is spontaneously broken.
This breaking leads in turn, by (21), to the spontaneous
symmetry breaking of the OðmÞ and/or OðN −mÞ
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symmetries. Hence, away from the origin, there are mass-
less Nambu-Goldstone bosons and a dilaton.
We have therefore showed that in the strict large rank

limit, there is a conformal manifold and a moduli space of
vacua for g12 < 0. This is exactly as in the ϵ expansion. We
will next see that the finite temperature corrections lead to a
hyperbola, exactly as in the ϵ expansion.
The variational functional W at finite βth is obtained by

introducing a trial thermal state,

W ¼ F 0 þ Tr½ρ0ðH −H0Þ� ≥ F ;

H0 ¼
1

2

X
i

½π2i þ ð∇ϕiÞ2 þm2
i ðϕi − σiÞ2�; ð22Þ

whereF is the free energy density of the model andF 0 and
ρ0 denote the free energy density and thermal density
matrix associated with H0. In the limit βth → ∞, we
recover the previous ansatz (19). For g12 ≥ 0, there is a
unique vacuum that respects the symmetries, and therefore
we proceed to the cases with g12 < 0 where the symmetry
can be broken. One finds that now W ¼ 0 at any point on
the ridge m2

1 ¼ m2
2 ¼ 0,

�
σ21
σ22

�
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22=g11

p
1

�
μ2−ϵ −

cðϵÞβϵ−2th

12

�
x

1 − x

�
; ð23Þ

where the function cðϵÞ is defined below:

cðϵÞ≡ 6Γð2−ϵ
2
Þζð2 − ϵÞ
π

4−ϵ
2

: ð24Þ

Note that this function goes to 1 in ϵ → 0 limit, making (23)
consistent with (12) in the small ϵ regime. Moreover, the
Riemann zeta function diverges in the ϵ → 1 limit and
hence restricts the validity of this analysis to ϵ < 1. Such
divergences of thermal expectation values of the fields are
consistent with the impossibility of a symmetry-broken
phase in (2þ 1) dimensions at nonzero temperatures.
Each point on the ridge (23) corresponds to a global

minimum of the free energy, and therefore it represents a
thermodynamically stable phase in the large N limit. In
general, the hyperbola (23) does not pass through the
origin, and therefore OðmÞ ×OðN −mÞ is broken at finite
βth. The introduction of the temperature βth explicitly
breaks scale invariance, but a moduli space of vacua
continues to exist. These results agree with the ϵ expansion.
Now comes the more difficult question regarding which

of these fixed points survives at finite rank. In the ϵ
expansion, we provided an explicit answer that shows that
symmetry breaking indeed takes place at finite large rank.
To find out the answer more generally, one needs to study
1=N corrections at arbitrary ϵ.
In summary, we have shown that the conformal manifold

and moduli spaces of vacua exist at arbitrary d and N ¼ ∞.

The 1=N corrections needed to find out the true finite
temperature vacua at finite large rank were only determined
for 3 − ϵ dimensions with small ϵ. Therefore, we can
conclude that symmetry breaking at finite temperature in
the biconical models takes place in 3 − ϵ dimensions for
finite small ϵ. It would be nice to extend this analysis to
finite ϵ.
Toward a model in 2þ 1 dimensions:The finite temper-

ature symmetry breaking pattern of the biconical model is
(for n1 < n2)

Oðn1Þ ×Oðn2Þ → Oðn1 − 1Þ ×Oðn2Þ: ð25Þ

This cannot hold true all the way to ϵ ¼ 1, i.e., 2þ 1
dimensions, due to the Mermin-Wagner-Hohenberg-
Coleman theorem [18,51,52] (remember that we are at
finite temperature). The only exception is n1 ¼ 1, in which
case one can potentially have the symmetry breaking
pattern (25) at finite temperature

Z2 ×OðNÞ → OðNÞ: ð26Þ

This may in principle occur at finite temperature in 2þ 1
dimensions and hence the case n1 ¼ 1 warrants some
attention.
In fact, (26) does occur in the ϵ expansion. The appro-

priate largeN limit turns out to be γ̃ ¼ Nγ, β̃ ¼ Nβ, α̃ ¼ Nα,
which now leads in the large N limit to the equations

α̃ ¼ γ̃2; β̃ ¼ 1: ð27Þ

Clearly this again parameterizes a one-dimensional con-
formal manifold, except that now it is unbounded and looks
like a parabola. These theories describe a free field in an
OðNÞ bath where the backreaction of the free field sector on
the OðNÞ model is very small. It is crucial to find which of
the fixed points on the conformal manifold correspond to
fixed points that exist also for finite rank. Following the same
strategy as before, one finds the following equation:

ðγ̃ − 1Þðγ̃ þ 3Þ ¼ 0:

Of course, γ̃ ¼ 1 is the OðNÞ invariant fixed point, while
γ̃ ¼ −3 is the new, more interesting fixed point. To leading
order in the large rank expansion, the thermal masses
(squared) at this new fixed point are ð2π2ϵ=3β2thÞð−3; 1Þ.
Therefore we obtain this hyperbola of vacua:

3Ψ2 − ϕ⃗2 ¼ N
12β2−ϵth

: ð28Þ

One can further show that, upon including finite rank
corrections, the only true vacuum that remains is the
one where Ψ obtains a vacuum expectation value hΨ2i ¼
ðN=36β2−ϵth Þ and hϕ⃗i ¼ 0.
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Therefore, the Z2 symmetry at finite temperature is
certainly broken at large enough finite N and small ϵ. It is
possible in principle that it continues to hold true not just
for small ϵ but also in 2þ 1 dimensions. We hope to
resolve this question in the future.
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