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The Jaynes-Cummings model is a cornerstone of light-matter interactions. While finite, the model
provides an illustrative example of renormalization in perturbation theory. We show, however, that exact
renormalization reveals a rich nonperturbative structure, and that the model provides a physical example of
a theory with a chaotic coupling trajectory and multivalued β function. We also construct an exact
Wilsonian-like renormalization group flow for the effective scattering matrix, and show how multivalued
features arise in the flow. Our results shed light on nonperturbative aspects of renormalization and on the
structure of the Jaynes-Cummings model itself.
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The Jaynes-Cummings model, describing a single
electromagnetic mode interacting with a two-level atomic
system [1], underlies light-matter interactions [2,3], cavity
QED [4], and circuit QED [5].
Fundamental aspects of the model continue to attract

attention [6,7]. We consider here the renormalization of the
Jaynes-Cummings model (JCM). Renormalization is often
introduced, in quantum field theory, as a necessary tool for
removing ultraviolet (UV) divergences which arise through
virtual particle loops in perturbation theory. At each order
of perturbation theory, the parameters of the theory are
adjusted to match some observational input, which removes
divergences and, by fixing the parameters, makes the
theory predictive. From this perspective it becomes clear,
as is known but not as frequently discussed, that even
UV-finite theories require a “finite renormalization” of their
free parameters [8,9].
The JCM is no exception. It requires, as we will see, a

finite renormalization at each order of perturbation theory,
analogous to coupling renormalization in the loop expan-
sion of QED. This goes through as one might expect, but is
by definition limited to the small-coupling regime. As
motivation to go beyond this, we note that the c and a
theorems [10–14] demonstrate the existence of monotonic
functions of the renormalization group (RG) flow, from
which it is inferred that periodic or chaotic coupling
trajectories are forbidden—however, exactly solvable
models show that renormalization can lead to exotic
behavior including chaos and limit cycles [15–20].
We will show here that carrying out renormalization of

the apparently simple JCM nonperturbatively reveals a
surprising depth of structure. We will see that one can
construct a β function, describing the RG flow of the
coupling, which is multivalued [20], with the direction of
the flow reversing when encountering branch points.
Despite this, monotonic functions of the flow exist. As
such we show that the JCM provides a physical, and exact,

example of the fact that exotic coupling trajectories are not
ruled out by the existence of monotonic flow functions.
We will find an unusual physical consequence of the

multivalued flow, namely that more than one renormaliza-
tion condition is needed to fix the single coupling in the
JCM and make the theory predictive: we will show how to
resolve this. We will also consider the analog of a
Wilsonian effective action approach [21,22] to renormal-
ization of the JCM, constructing an exact RG flow for the
effective scattering matrix, and show how a single-valued
flow can be compatible with a multivalued coupling.
The Jaynes-Cummings Hamiltonian.—The JCM couples

a single electromagnetic mode, frequency ω, to a two-level
atomic system, ground state j↓i and excited state j↑i, with
energy gap ωa. The Hamiltonian is H ¼ H0 þ gV for
coupling g, where

H0 ¼ ωa†aþ ωaτ3; V ¼ a†τ− þ aτþ; ð1Þ

in which the electromagnetic mode ladder operators
a, a† obey ½a; a†� ¼ 1 as usual, and the τ operators
may be represented as τþ ¼ j↑ih↓j, τ− ¼ j↓ih↑j, and
τ3 ¼ ½τþ; τ−�=2. The time-evolution operator UðtÞ in the
interaction picture is known exactly [23–25]: taking
for simplicity the “resonance limit” in which the detuning
ωa − ω (the difference between the photon and atomic
energies) is zero, the time-evolution operator is, for
n ≔ a†a [26],

UðtÞ ¼ cos gt
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p j↑ih↑j þ cos gt
ffiffiffi
n

p j↓ih↓j

− iaτþ
sin gt

ffiffiffi
n

p
ffiffiffi
n

p − i
sin gt

ffiffiffi
n

p
ffiffiffi
n

p a†τ−: ð2Þ

We will reintroduce the detuning later.
Renormalization.—The basic observables in the JCM

are transition amplitudes between states of form jj;↕i
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containing some number of photons j, and with the atom in
one of its two states. Defining

AjðtÞ ≔ ihjþ 1;↓jUðtÞjj;↑i; ð3Þ

the simplest observable is the probability jA0ðTÞj2 for the
atom to decay from its excited state, emitting a photon, after
some time T. A measurement of this probability, Pobs, can
be used as a renormalization condition to determine [from
the form of (2)] g0 ≔ gT, and so g. To make a more specific
analogy with field theory, suppose that the coupling is
switched off after some time t ¼ T. Then UðTÞ is the S
matrix, which depends only on the dimensionless coupling
g0, the analog of the charge in the QED S matrix.
We start by making contact with perturbation theory.

This amounts to evaluating (3) in powers of the “bare”
coupling g0. This expansion has a Feynman-diagram
analogy in QED, since the JCM interaction vertex describes
the emission or absorption of a single photon from
an atomic (matter) state, mirroring the three-point vertex
of QED. The “tree level” contribution to the decay
probability jA0ðTÞj2 is g20. We would therefore identify
g0 ¼

ffiffiffiffiffiffiffiffiffi
Pobs

p ≡ gr, the physical, or renormalized, coupling.
At the next order of perturbation theory, corresponding to 1
loop in QED, one finds that A0ðTÞ ¼ g0 − g30=6, and so g0
must be adjusted to ensure that the calculated and measured
observables still agree. Following the usual procedure, see,
e.g., Sec. II in [9], we write g0 as a power series in gr, so
g0 ¼ gr þ λ1g3r þ � � �, and repeat the perturbative calcula-
tion. The renormalization condition at order g3r then
uniquely determines λ1 ¼ 1=6, and so g0 becomes

g0 ¼ gr þ
1

6
g3r þOðg5rÞ: ð4Þ

At each subsequent order of perturbation theory, the
renormalization condition similarly uniquely determines
the relationship between the bare and renormalized
couplings. The theory is then renormalized to that order
in perturbation theory, all as expected. We turn now to exact
results and nonperturbative renormalization.
From (2) the exact amplitudes AjðtÞ are simply

AjðtÞ ¼ sin gt
ffiffiffiffiffiffiffiffiffiffiffi
jþ 1

p
; ð5Þ

and the renormalization condition is gr ¼ sin g0. This
condition has an infinite number of solutions corresponding
to the possible branches of arcsin,

g0 ¼ arcsinnð�
ffiffiffiffiffiffiffiffiffi
Pobs

p
Þ; ð6Þ

in which arcsinnðxÞ ¼ nπ þ ð−1Þn arcsinðxÞ for n ∈ Z.
The choice of branch has physical consequences, as can
be seen from the “spectrum” of scattering probabilities
Pj ≔ jAjðTÞj2. As shown in Fig. 1, each branch defines a
different theory with a different spectrum. Hence, we have

found that the renormalization condition is not enough,
nonperturbatively, to identify the coupling and make the
theory predictive. This situation is unusual, and we will
return to it below.
Multivalued RG flows.—We can recast the above dis-

cussion in terms of a β function. Define the “renormalization
time” t ≔ log t=T, then the β function βðgrÞ ≔ dgrðtÞ=dt
describes the evolution of the coupling with respect to time
[27,28], such that grð0Þ is to match the renormalized
coupling above. Again beginning perturbatively, we can
find the 1-loop β function by inverting the series (4) for gr,
differentiating and transforming back:

β1 loopðgrÞ ≔ gr −
1

3
g3r : ð7Þ

From a small gr > 0, the coupling (seemingly) flows toward
an IR fixed point at gr ¼

ffiffiffi
3

p
. This is, however, outside the

perturbative regime, so we resum the perturbative series and
construct the all-orders β function

β0ðgrÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2r

q
arcsinðgrÞ; ð8Þ

which corresponds to the n ¼ 0 branch of (6). For a flow
beginning at gr ≳ 0, β0 is positive and so gr flows toward the
turning point at gr ¼ 1. At this point, the square root and
arcsin in β0 switch branch, as they must to account for (6);
the β function then switches sign and g decreases back
toward −1, where β switches sign again, and so on. As such,
because the β function is multivalued, the flow continues
through the turning points (see [20] for other examples). We
find that, after encountering n turning points, the exact β
function is given by

βnðgrÞ ¼ ð−1Þn
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2r

q
arcsinnðgrÞ: ð9Þ

The flow is illustrated in Fig. 2, which shows that the turning
points bound the coupling to obey jgrj ≤ 1 [as it must from
(5)]. This means that the fixed point at gr ¼

ffiffiffi
3

p
, inferred

from 1-loop perturbation theory, can never be reached. Thus
our results provide a greatly simplified analogy of the

FIG. 1. Scattering probabilities Pj (columns) given by different
branches of the solution to the renormalization condition at
Pobs ¼ 1=10. All branches [rows, with n and � labeling the
choices in (6)] yield the same P0 ¼ Pobs ¼ 1=10 by construction,
but give different Pj for j > 0. The fact that the rows differ shows
that different branches define different theories.
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Landau pole in QED, inferred from perturbation theory, but
which lies in an inaccessible part of parameter space [29,30].
The coupling trajectories are compared in Fig. 3. Those

calculated from the 1-loop β function deviate from the exact
solutions when gr first approaches one, and then tend to the
fictitious fixed point at gr ¼

ffiffiffi
3

p
. Depending on initial

conditions, a given exact solution can exhibit arbitrarily
many rapid oscillations, corresponding to passing through
many branches of the β function. This behavior is repre-
sentative of the chaos underlying the flow. To make this
explicit, observe that if we had used the probability jA0j2 in
our renormalization condition, rather than the amplitude,
we would have studied the flow of xðtÞ ≔ g2rðtÞ ¼ sin2g0et.
This is (up to a trivial rescaling of t) well known
as the function which interpolates the chaotic behavior
of the discrete logistic map with parameter 4 [31–33].
Now, following [20], define the “c function” by
dcðgrÞ=dgr ¼ βðgrÞ ⇒ dcðtÞ=dt ¼ β2(grðtÞ). As a func-
tion of the coupling, c is multivalued, but as a function of t
it is clearly monotonic. Thus we find that the JCM provides
a simple, physical complement to the examples in [20]
showing that, contrary to what may be inferred from the c
or a theorems [10–14], chaotic coupling trajectories are not
ruled out by the existence of monotonic flow functions.
We note that the RG flow of the coupling in the Ising

model with imaginary magnetic field [20,33], is also
described by the logistic map with parameter 4
[32,34,35]. Interpolating the dynamics and renormalization

of such discrete systems through continuous functions
following [31] allows an interpretation of RG flows in
terms of (quasi) Hamiltonian dynamics [32,33]. For the
logistic map, the interpolating function is our xðtÞ ¼ g2rðtÞ.
As such it is intriguing to note that the RG flow of the JCM
is shared with that of the Ising model: for the flow of xðtÞ
corresponding to that in Fig. 2 see Fig. 2 in [32]. These
same structures arise, though, through quite different
mechanisms, as we now discuss.
(Lack of) periodicity.—For an RG trajectory which flows

around a closed loop, a limit cycle, the parameters in the
Hamiltonian return to their original values after a finite RG
time [17], so the theory is periodic as a function of the flow
[18]. Special circumstances are required for such behavior,
see, e.g., [36], but the situation here is somewhat different.
The β function (9) describes the variation of the coupling
with respect to time, not with respect to integrating out
modes in aWilsonian approach. It is defined in terms of the S
matrix, and as such inherits its periodic features from those
of time evolution in the JCM. Periodicity is thus present in
this sense. However (and even without considering the β
function), different branches of solution yield different
physics, as shown in Fig. 1. As a result, a single measure-
ment is not enough, nonperturbatively, to determine the
single coupling in the JCM. This is markedly different to
what happens in perturbation theory, but we can explain it as
follows. The JCM interaction V can only change the photon
content of an initial number state jni by �1. Hence, the
theory splits into a product of decoupled two-level photon
subsytems [23–25,37]. In our example, n ¼ 0 and all
amplitudes in the subsystem (transitions between super-
positions of j0;↑i and j1;↓i) are indeed periodic as g0
changes from one branch to another. However, the same
periodicity does not extend to the entire spectrum of
probabilities Pj because the renormalization condition is
essentially blind to all other, decoupled, subsystems.
Effective S matrix.—In the “average effective action”

approach to the RG, see [21,22], one constructs a function
depending on a flow parameter k which, for k → ∞,
reproduces the classical action of the theory, and for which
a change k → k − δk corresponds to integrating out quan-
tum fluctuations with energy in the range ðk − δk; kÞ. As
such the full effective action of the quantum theory is
recovered as k → 0. Here, we construct a flow from the
“bare” interaction Hamiltonian V of the JCM, to the full S
matrix of the theory. We do so by reintroducing the
detuning ωa − ω (the gap between the photon and atomic
energies) and using it as a flow parameter. As before, we
switch off the coupling at time T, so UðTÞ is the S matrix.
Define k ¼ Tðωa − ωÞ=2, for 0 ≤ k < ∞, and write Uk for
the S matrix with this detuning. For large k, Uk behaves as
(see Supplemental Material A and B [38])

Uk ∼ cos k − 2iτ3 sin k − ig0V
sin k
k

; ð10Þ

–4 –3 –2 –1
t

–1

1

0.5

3
gr(t)

FIG. 3. Coupling trajectories as a function of RG time. Both
exact solutions (solid lines) yield the same renormalized coupling
grð0Þ ¼ 1=2, but come from different branches of (6) corre-
sponding to g0 ¼ π=6þ 2π and g0 ¼ π=6þ 12π. The 1-loop
trajectories (dashed lines) tend to the fictitious fixed point at
gr ¼

ffiffiffi
3

p
.

FIG. 2. Starting from gr ≳ 0, the coupling flows toward gr ¼ 1,
where the β function (9) switches branch, and the flow turns
toward gr ¼ −1, and so on. The flow is shown after encountering
n turning points, for n from 0 to 4.

PHYSICAL REVIEW LETTERS 125, 130402 (2020)

130402-3



which shows that transitions between atomic levels are
suppressed as 1=k because of the large energy gap ∝ k
between them. Thus the detuning acts as a mass scale which
suppresses quantum fluctuations. Subtracting the diagonal
contributions in (10), Uk is clearly proportional to the bare
vertex g0V up to a factor. Given this, we define an effective
transition matrix T k by

T k ¼ Uk − ðcos k − 2iτ3 sin kÞ − ig0V

�
1 −

sin k
k

�
; ð11Þ

which obeys the two limits

T k → −ig0V; k → ∞;

T k → e−ig0V − 1; k → 0: ð12Þ

Hence, T k interpolates between the bare vertex in the UV,
k → ∞, where all quantum transitions are suppressed, and
the T matrix proper (the S matrix minus the forward
scattering contribution) in the IR, as k → 0 and the
suppression is removed. This is our Hamiltonian analog
of the average effective action. Nicely, the subtractions
in (11) mirror the usual subtraction of regulator-function-
dependent terms from the average effective action [39],
which ensures the correct UV behavior in (12).
Note that the effective T matrix (11) is a single-valued

function of k, and does not exhibit any periodicity. Can
the structures seen above, in particular the multivalued
bare coupling, then reappear? To answer this, we let the
coupling become k dependent, writing g0 → ek, and adjust
ek to preserve our renormalization condition under the
flow; here that condition is just gr ¼ ih1;↓jT kj0;↑i which,
for given, fixed gr is (see Supplemental Material B [38]):

gr ¼
�
1 −

sin k
k

�
ek þ

ekffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ e2k

q sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ e2k

q
: ð13Þ

In the IR, k ≃ 0, we can solve this immediately to find

gr ≃ sin ek ⇒ ek ≃ arcsinngr; ð14Þ

which is just the multivalued solution of the renormaliza-
tion condition above. In the UV, we must solve (13)
numerically; the solution(s) are shown in Fig. 4 along with
the exact IR result (14). For large k, there is only a single
solution to (13), which deviates only slightly, for k > 0,
from the all-orders perturbative solution ek ¼ arcsin gr (the
n ¼ 0 branch). As k decreases toward the IR, however,
additional solutions appear in pairs in the flow. As k → 0
these interpolate to the nth and (nþ 1)th branch solutions
for n ≥ 1, as shown, with the higher n solutions appearing
at smaller k. Thus, the perturbative solution to the
renormalization condition exists for all k, while the “non-
perturbative” solutions appear at finite RG times. We find

therefore that, in the IR, there are several possible end
points of the flow, recovering the multiple different
couplings arcsinn gr. The faint gray lines in Fig. 4 show
contours of (13) for constant gr; these illustrate that for
gr > 1 solutions to the renormalization condition can
appear and disappear in the flow as k decreases, but that
they never reach the IR at k ¼ 0; this is consistent with the
fact that there no physical solutions to the renormalization
condition in the IR for gr > 1.
Discussion.—We have shown that renormalization of the

apparently simple Jaynes-Cummings model provides an
exactly solvable example of a theory with exotic coupling
trajectory and multivalued beta function. One consequence
of these structures is that, nonperturbatively, there can be
multiple solutions of a given renormalization condition,
meaning that a single measurement is not enough to
determine the single free parameter (the coupling) in
the theory. (See Supplemental Material C [38] for a
discussion of multiple measurements.) This has physical
consequences. For example, a misidentification of the
coupling, or limiting the coupling to the perturbative
branch, could mean missing the famous collapse-revival
physics of the JCM [40,41], which is a strong-coupling
phenomenon [6,42].
The question arises of how our results would be affected

by the addition of more structure, which could extend both
the theoretical and experimental applicability of the model.
The RG structure of field theories like QED is extremely
rich [29,30,43], so a natural first step beyond our results
would simply be to add the “counterrotating” terms to the
Hamiltonian which turn the JCM into the Rabi model. The
fact that the Rabi model is also solvable [44] offers scope
for progress here.
We have also introduced an S-matrix analog of the

average effective action, using the detuning of the JCM as a
flow parameter. Normally one can find an exact flow
equation for the average effective action, but not solve it
exactly. In the JCM we can essentially jump straight to the

FIG. 4. Solutions to the renormalization condition (13) defining
the coupling ek, at gr ¼ 1=2. Points show numerical solutions. As
k decreases toward 1, multiple solutions appear in the flow, and
interpolate toward the IR solutions (14) (horizontal lines) shown
for n ¼ 0;…; 4.
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exact solution. It would nevertheless be interesting to
investigate the corresponding flow equations [which can
be set up for (11) or (13) by taking the derivative with
respect to the detuning] in order to explore how the
bifurcations in Fig. 4 arise; this could give insight into
RG flow equations in other theories. Certainly the essential
idea of an effective S matrix is not limited to the JCM, and
so may offer an alternative approach to Hamiltonian RG
studies [45] in other theories.
Our investigation highlights the dangers of inferring

results from perturbative renormalization (even in simple
settings stripped of the complications of removing diver-
gences) and provides nonperturbative insight into the RG in
a physical and accessible setting.
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